PAVOL JOZEF SAFARIK UNIVERSITY IN KOSICE
FACULTY OF SCIENCE

DOCUMENT STATE SYNCHRONIZATION WITH OFFLINE
MODE

2018/2019 Simon Kocirek

PAVOL JOZEF SAFARIK UNIVERSITY IN KOSICE
FACULTY OF SCIENCE

DOCUMENT STATE SYNCHRONIZATION WITH
OFFLINE MODE

BACHELOR'S THESIS

Study programme: Informatics

Study field: 9.2.9. -- Applied Informatics
Workplace: Institute of Computer Science
Thesis supervisor: RNDr. Peter Gursky, PhD.
Thesis consultant: Mgr. Martin Vecetfa

Kogice 2009 SIMON KOCUREK

Univerzita P, J. Safarika v KoSiciach
Prirodovedecka fakulta

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Simon Koctirek

Studij ny program: Aplikovand informatika (Jednoodborové $tadium, bakalarsky
I. st., denna forma)

Studijny odbor: 9.2.9. aplikovana informatika

Typ zaverecnej prace: Bakalérska praca

Jazyk zavereCnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Document state synchronization with offline mode

Nézov SK: Synchronizicia stavu dokumentov s off-line médom

Ciel: 1. Analyze current document state synchronization solutions
2. Compare and choose most fitting synchronization, storage and
communication methods with it’s implementation suitable for web browser
solution
3. Enrich the existing document state synchronization implementation with
offline capabilities

Literatira: 1. Benson E. Marcus A. Karger D. & Madden S. (2010 April). Sync kit:
a persistent client-side database caching toolkit for data intensive websites.
In Proceedings of the 19th international conference on World wide web (pp.
121-130). ACM.
2. Neil Fraser (2009 January), Differential Synchronization. In Proceedings of
the 2009 ACM Symposium on Document Engineering (pp. 13-20).

Vedici: RNDr. Peter Gursky, PhD.

Konzultant: Mgr. Martin Veceta

Ustav : UINF - Ustav informatiky

Riaditel’ istavu: prof. RNDr. Viliam Geffert, DrSc.
Datum schvalenia: 03.05.2019

\i0s Cu’ic e
\‘ ‘/\j u@,"'w '\W
Univerzita Pavia Jozefa Saférika v Kosiciach
Prirodovedecks fokulia
Ustav infci~- ‘(y

Abstract

In this paper we focus on solving the issues caused by going offline inside a state
synchronizing network. In order to keep the state consistent across all clients in a
network, various synchronization methods are used. These methods expect all clients
to be available at any time and don't describe situations where some of the clients go
offline and later attempt to reconnect. First, we analyze a sample of synchronization
methods, while comparing the ways they could support offline mode. After that we
choose the most fitting method and provide a detailed description of possible
modifications allowing client re-connections without loss of data or state conflicts.

Finally, we implement and compare these modifications.

Key words: Synchronization « Offline « Implementation

Abstrakt

V tejto praci sa zaoberame rieSenim problémov spdsobenych odpojenim klienta zo
siete, ktora synchronizuje stav klientov. Na udrzanie konzistentného stavu naprie¢
vSetkymi klientami v sieti sa pouzivaji r6zne synchroniza¢né metddy. Tieto metddy
oCakéavaju nepretrziti dostupnost’ vSetkych klientov a nepopisuju situacie, kde sa
niekol’ko klientov odpoji a neskodr pokusi opédtovne pripojit. Najprv zanalyzujeme
vzorku synchroniza¢nych metod, porovnavajic spésoby, akymi by mohli podporovat
offline mod. Nasledne vyberieme najvhodnejsiu metédu a poskytneme detailny popis
moznych Uprav umoziujicich znovu-pripojenie bez straty dat, alebo konfliktov.

Nakoniec implementujeme a porovname tieto Upravy.

KPucové slova: Synchronizécia « Offline « Implementécia

Table of Contents

LT 21T T0] [T | 2SSOSR 6
OVerview Of the ChaPTErS........c.oiii e 7
INEFOAUCTION....ceiiiiee bbbt b bbbt 8
1 Why is Offline Mode Needed? ... 9
1.1 How Should an Offline Mode WOrKcccoiiieiiiiiiesee e 9
2 Current State of Offline Synchronization............ccccoceeveie i, 11
2.1 Existing Solutions and Their Drawbacksccccvveviiieiicii e 11
2.1.1 OFFICE 365eieiie ettt et nre s 12
2.1.2 Go0gle DOCS OFfiCE SUITEoouiruiiieiieieie et 12
2.1.3 Visual Studio LiVE SNArecccoouiiiiiieiieieie e 13
2.1.4 BOX.iiiiiiieititeiet ettt ettt et ne e 13
2.1.5 MEteOr FraMEWOIK........cueiieiieieiieeie ettt re e nnees 14
2.1.6 Git Version Control SYSIEMcccviiiiriiieiesieesie e 15

3 Approach to Implementing Offline MOdE...........cceoeiieiicii i 16
3.1 Problem Definition ...t 16
3.2 Subproblems Encountered During Implementationccocooovinininiieienienn, 18
3.2.1 Detecting a Network Partitionccccceoeieneiininineeee e, 19
3.2.2 Choosing the Right Synchronization Method...............cccooveiiiciiccice, 23
3.2.3 Optimizing Space and Time CompleXity..........cocevvveieiiieirere e 29
3.2.4 Resolving Significant State CONFlICESccccoviiiiiniiie, 30

4 DefiNed ArChITECTUNE.......ei oottt nneas 33
4.1 Choosing and Integrating a Synchronization Methodcccccoviiieiiienen, 33
4.1.1 Server-side INtEgratioNcccvciviiieiieie et 33
4.1.2 Client-side INtegratioN..........cceieiieiiriie e 35
4.1.3 Conflict Resolution Changescccooeieiiiiiiiinieieese e, 38
4.1.4 Detecting Conflicts that Require Manual Merge..........ccocevveviviieeniecinnnn, 39

5 Implementation DetailS..........cooviiiiiiiiiii 41
5.1 Library EXIENSIONocoiiiiiiiiieiieieie ettt 41
5.2 Server IMplementationcocuoiiiiiiie s 41
5.2.1 SEIVEI PEISISIENCEeouviiieiieie ettt naeas 42

5.3 Client IMpPIeMENtatioNcccuviiieiieicie e 43
5.3.1 Reconnection implementationccccooererenininieieee e 43

5.3.2 Large conflict reSOIULIONc.ooiiiiiiiiie et 43

5.3.3 Clent-Side PersiStENCE.coiiiiirieieieie ettt 44

T S =T] o[PS 44
5.4.1 Reasoning Behind Stability of Offline Modecccccoevveveiieiiciecen, 44

B SOIULION ANGIYSIS ... 47
(©0] 0 [od 11] o] o [0TSR 48
RESUIME ...t e et e e e nne e 49
RETEIEINCES ...ttt bbbt 54
TaDIE OF FIQUIES ..ottt nneas 55
T ATACHMENTS ...t nre e nne e 56

Terminology

Document is a written piece that trains a line of thought. For our purposes we will consider

a document any single block of binary or text data, stored in an enriched text format.

Synchronization refers to a process of establishing consistency among data from a source
to a target data storage and vice versa. This is more commonly known as data

synchronization to prevent confusion with process synchronization.

State of a program is a serialized version of variables and constants of a program at a
specified time. Any two processes in the same state must behave identically upon

receiving identical inputs.

Offline indicates a state of disconnection from a network, as opposed to indicating being in
a ready to user state. In this thesis we consider being offline as being disconnected
from the network our server is located in, rather than being disconnected from any

network.

Reconnection is an event, where client regains connected state to the server and therefore
becomes online. This even can happen only for clients already situated in an offline

state.

Collaborative System is an application software designed to allow people involved in
a common task to achieve their goals. We will consider collaborative system any
system, that allows real-time collaborative editing of at least one document in a web
application. This editing is performed collectively by multiple clients, where each edit

is propagated to all clients with real-time feedback.

Overview of the chapters

In the introduction chapter we start by defining the problem at hand. We explain,
why is the lack of offline mode an issue and who it affects. With this we also conclude our
motivation to implement this offline mode solution, while describing the benefits it brings.
We also provide a brief overview of the current state of the solutions to this problem.

Next, we dig deeper into existing solutions. We show what features they have, lack

and how they approach problems we defined. We will use these findings as an inspiration

during our implementation. For each implementation we will mention what how will our

solution improve upon its concept.

In the third chapter we focus on the way we approach the larger problem of
implementing the offline mode. We break it up into smaller subproblems and describe each
subproblem with challenges it presents, possible solutions with their pros and cons of using

the solution in an offline mode implementation.

The Defined architecture chapter servers as an implementation guide for creating
document state synchronization offline mode. For each defined subproblem from the
previous chapter it describes our solution and its possible implementation. After that we

provide a chapter that briefly goes over code samples that were crucial to our solution.

The last two chapters describe characteristics of our custom implementation of
offline mode for document state synchronization. They provide details of choices we made
during implementation together with time and space complexity of our solution. Also
mentioned are possible improvements and alternatives with their tradeoffs. Besides possible
improvements, we will describe any shortcomings of our implementation, that might be

improved upon by modifying, or extending our solution.

Introduction

Have you ever been in a situation, where the only network connection you had
was flaky at best, with low speeds and frequent disconnects? This type of connections is
often the only option in third world countries and is common even in countries with

developed internet infrastructure.

Such flaky connection can cause more than annoyance with pages not loading fast
enough. Many people working in healthcare, finance or government spheres require

internet connection to perform their jobs.

For these people sudden disconnection might mean loss of important work. When
connection to the server is lost, collaboration systems often discard all work that wasn’t
uploaded. Leading to important meeting invitations not being sent, or patient health
statements not being recorded.

Often the collaboration systems disregard this as an issue and expect users to use
stable internet connection instead. While not without tradeoffs, implementing offline
mode is feasible task, that is also far simpler than implementing collaboration system.

Our goal is therefore to solve this problem by providing a solution for offline
mode in collaborative systems. A solution that would remember all actions performed by
user after going offline and upload this whenever possible.

Offline would lead to better user experience among all users, regardless of their
internet connection. While also allowing more reliable web applications, that can be used

in sensitive environments, without the fear of losing data.

1 Why is Offline Mode Needed?

The problem of unreliable network connection is something that website users
experience in both urban and rural areas no matter if they live in first or third world
country. Besides the inconvenience and frustration, it causes it can have more serious
effects if it prevents people from performing their jobs, or straight up leads to them losing
the work they have done.

This might not seem like a big deal if we are talking about personal use of
applications, however for collaborative systems used in healthcare, or finance, being able
to use applications in every case could potentially save lives or prevent companies from

going bankrupt.

Offline mode for web applications is a solution that would help all users relying
on the application for commercial or personal purposes. Not only would it allow for easier
collaboration where stable internet connection is no longer a necessity, this mode would

also lead to greatly improved user experience.

1.1 How Should an Offline Mode Work

To prevent all issues with losing network connection, our fist main concern is
allowing user to work even when they can no longer submit their changes to the server.

This is crucial for an offline mode implementation, as without this no work can be done.

The second main concern of our solution is how the event of reconnection is
handled. It is unacceptable that any work that was previously stored on the server or that
was performed by the client while offline is lost. All progress must be merged manually

by users or stored somewhere so that it is available for use or later merging.

For the user experience of applications that support offline mode to not be
hindered, the application still needs to work in real-time. That means that all changes that
the system never stops, or locks down. This should not happen even in case larger

conflicts need to be merged.

Offline mode for collaborative systems should be an abstract concept, that isn’t
proprietary or tied to a specific technology stack. For this reason, we only consider a
stand-alone library, or extension of existing library for document state synchronization

an appropriate solution to the problem.

Similarly, the offline mode should not introduce new behavior to the already
existing synchronization system and should be able to work on a single document, rather

than use any extensions like file system synchronization to perform reconnection merge.

Our offline mode also needs to work in multiple network scenarios. It is not
enough that the mode would only work in cases where server communication is
impossible for a time period longer than 10 minutes, in which significant state changes
were introduced on both client and server side. A situation, where disconnections are
frequent, but short should also be considered and handled with already mentioned

characteristics.

10

2 Current State of Offline Synchronization

To battle the issue of frequently disconnecting clients and improve user
experience, web browser vendors created many mechanisms, that made way for websites
usable without internet connection. These allow web developers persisting data between
user sessions and running code before the webpage gets loaded.

With time, applications utilizing this offline capability, are becoming more and
more popular. This raise in popularity is partially caused by the progressive web
application movement, which states offline mode as one of required parameters of every

progressive web application.

Progressive web applications are web applications, that can be used in same way
as native applications. They utilize offline storage, notification APIs and service workers,
to provide better user experience, more functionality and lower network usage. Currently
their only drawback being browser support, where currently only one of the major

browser vendors supports all APIs needed to implement such application.

The acronym API stands for Application programming interface. In the context
of offline storage mechanisms, API refers to a set of implementation independent
functions, with their functionality specified by the W3C (Hickson, 2016).

Parallel to the rise of progressive web applications, is the increase in popularity
of complex single page applications, utilizing modern JavaScript frameworks. Single
page applications allow webpages to have more complex logic, actively respond to user

actions and communicate with server without refreshing the page.

2.1 Existing Solutions and Their Drawbacks

With wide browser support for complex web applications with offline capabilities,
offline modes for some collaboration systems appeared. Each system described further
chose a different approach to implementing the offline mode. We will describe the pros,

cons and inner workings of this approach and show, why this solution does not meet all

11

requirements for a collaboration system offline mode that does not hinder user

experience.

2.1.1 Office 365

The first example of a web application that supports collaboration and is vital for
many professions is Office 365 made by Microsoft. Historically this tool did not support
multiuser collaboration and was based on a locking mechanism, where each user locked

his file, preventing others from modifying its content.

Nowadays it is possible for multiple users to edit the same document, with real-
time feedback. However, problems start to appear once internet connection is lost. The
application gets stuck in a state where “Saving...” dialog is displayed, and user is free to

continue working.

The main issue with this system is that the saving dialog never disappears, and
user state is not saved even after regaining connection. This is not ideal, because it gives
user the illusion that his work will eventually be saved, when there is no system for

reconnections in place.

2.1.2 Google Docs Office Suite

Another widely used office suite is Google Docs, made by Google. This office
suit has similar capabilities to those of Office 365 and like Office 365, Google Docs is
also integrated with its own file storage for storing documents.

With multiuser collaboration implemented by integrating Operational
Transformation synchronization method this application serves as an example that robust

collaborative applications can be built using this method without any issues.

When it comes to offline capabilities, Google Docs can be considered a direct
improvement over Office 365. After user loses internet connection, this event is quickly
discovered and user is notified that his progress will no longer be saved, until he

reconnects.

12

To prevent the need for synchronization upon reconnection, the application locks
entire document and user is not able to perform any change while offline. While not ideal,
as we would like that users are still capable of working even when offline, this system

prevents the user from doing work that would be eventually lost anyway.

The preferred solution Google created for offline mode is a custom browser
extension that allows working even without connection to the server. For our purpose this
is a very cumbersome solution as creating a browser extension for every supported
browser requires a lot of work. Offline mode should be part of the synchronization and

not additional application tied to the browser the user is running.

2.1.3 Visual Studio Live Share

New addition to collaborative systems are text editors using CRDTSs for state
synchronization. The biggest difference between these systems and more traditional
systems based on Operational Transformation method is that server is not required. For
this reason, we redefine a disconnected client as a client that is unable to reach all other
clients in the network.

While peer to peer networking allows for a higher tolerance of network partitions,
Visual Studio Live Share does not take advantage of this feature. In case of disconnection
the client session is terminated, meaning he will no longer be able to see documents of

other clients and his documents will no longer be shared.

This sounds like a reasonable implementation of offline mode; however, this fully
prevents all clients from editing anything other than their own documents while offline,

making it unusable as an offline mode for collaboration.

2.1.4 Box

Box is a file sharing service, which serves as an alternative to cloud storage
services like Dropbox and Google Drive. While its collaboration capabilities are very

limited?, the offline mode approach is quite unique.

1 Box file collaboration works by locking files, like old Office 365 versions, while also keeping change
history, to allow undoing unwanted changes.

13

In case user was editing a file and went offline a notification is displayed, while
user can continue doing his work on opened file. During this time, his lock is released,
and others are free to edit the file concurrently. After reconnecting the client version is

saved as a copy of the edited file, ensuring that both server and client state are preserved.

While original, this approach has few limitations. First, in a collaborative system
that does not support multiple files, creating such offline mode would require adding
additional functionality to the original collaborative system. Another minor limitation is
that the states are not merged upon reconnection, leading to multiple users each editing

their own file, instead of all users collaborating on the same file.

2.1.5 Meteor Framework

Meteor is a JavaScript framework with offline mode support. Applications written
using Meteor should have offline capabilities by default, resulting in an offline mode for

any web application, even ones that allow collaboration.

It creates this offline mode by performing optimistic updates and simulating
server response even when there is none. When offline all requests and data gets stored?
and are persisted even after user session ends. Persistence of this kind is a nice to have
feature for collaboration system offline mode, as it guarantees that no work is lost even

when user reloads or closes the web application.

The problem of this solution lies in its generality. Collaborative systems require
special treatment during reconnection, which is something Meteor does not provide. All
server requests and responses that are a cause of conflicts are straight up ignored, without

any merging.

Another and main issue of this framework is that it ties the developers to a specific
proprietary technology stack, where Meteor requires that it runs both on the frontend and

the backend and therefore is not worthy for a general state synchronizing offline mode.

2 This storage might require usage of a third-party library created for this framework.

14

2.1.6 Git Version Control System

Currently Git is the most widely used version control system available. While not
a collaborative system by definition, its main purpose is to allow collaboration of multiple
users on same data. It does so by sacrificing the real-time aspect of collaborative systems.

All clients are expected to work offline and submit changes only once they are done.

Git works fully offline; inspired by its approach to state synchronization we can
create a custom offline mode solution that would also work in real-time and therefore be

an offline mode for fully fledged collaborative system.

Git’s works in a similar way to Differential Synchronization (See chapter 3.2.2.4)
with the only difference being that merging is not done automatically if there are conflicts.
Before submitting changes to the server all conflicts need to be resolved manually by the

user.

15

3 Approach to Implementing Offline Mode

Before we start with implementation of an offline mode for a state synchronizing network.
We first analyze and compare current document state synchronization solutions, with
primary focus being differences in synchronization methods and the way they resolve
state conflicts.

Next, we will shift our focus towards implementation and describe advantages
and disadvantages of possible offline mode implementation for each considered

synchronization method.

As we plan on creating a solution for web applications, we will take into
consideration web browser limitations as well as feature support. With this in mind, we

will choose the most fitting storage method for saving any progress made while offline.

And to allow push notifications from the server, needed for state change
propagation to all clients, we will also describe possible solutions alongside pros and cons

of using them during client reconnection.

After we are done with the analysis of all theoretical and technical aspects of our
solution. We enrich one of the existing, open source document state synchronization

implementations with offline capabilities.

3.1 Problem Definition

All web applications are based on a client-server model, where server is given by
a Universal Resource Locator® and the client is user using a web browser. This fact gives
us a flexibility in interactions between users, in case they are all connected to the same

server. Allowing us to implement a collaborative system inside a web application.

Client-server model is a distributed application structure where the server is a

service provider, responding to multiple clients, that are using the provided service. This

3 More commonly known as the URL.

16

model is an alternative to less used distributed Peer-to-Peer model. Client-Server model
Is centralized, with server being the center of communication, which often leads to

simpler implementations of stateful systems and systems with authentication.

Where this model comes into play, is collaborative system implementation. It
allows simple propagation of changes through a common server. In order to commit a
performed edit, client only needs to send one request to the server, which later propagates

the change to all other clients.

Ol Ol O
— — —
Client 3 A Client 2 4 Client 1

4. Propagate Change

1. Perform Edit

-

m

I

Server &
2. Save Edit*-, 3. Confirm Change

(I‘

Database

Figure 1 Client change propagation

The server has multiple roles in this scenario:

e It serves as a storage for the data all clients operate on, meaning all that is
needed to change the data is sending a request to the server. Which stores the
data in a database, before further propagation.

e The server handles propagation of each change performed on the data to all
clients, so that every client operates on the changed data, rather than the old
one and state is consistent across all clients.

e Conflict resolution, as well as any transformations of the received data are
handled by the server. Allowing for simpler client-side implementations and
more secure systems.

e Allows checking for unauthorized requests and constraint violations, since the

server can serve as an authority to authenticate against.

17

The already mentioned conflict resolution is a mechanism, for handling state
conflicts. These occur in case when data changes performed by two or more clients are
mutually exclusive. Example of such mutually exclusive actions are editing and deleting

same paragraph of text or adding different words on the same position in text.

In the case of state conflicts, it is not clear how the two different states should be
merged together. Currently there is no right, or definitive solution, as the merging depends
on the states being synchronized as well as system preferences (Kortub, 2017).

It is desirable that users aren't bothered with small conflicts, even when it means
generating corrupted data, or throwing away changes made by some user. As users can
repeat the previously performed action again, without any concerns.

When larger state conflicts occur, any possible data loss is unacceptable. We
tackle this problem, as it’s essential that user’s work isn’t lost after reconnecting, resulting

in a situation similar to losing work in a synchronization system without offline mode.

Handling large state conflicts, together with implementation of storing data, while
disconnected, will result in an offline mode implementation, where client separated from
the server in the event of network partition* will be able to synchronize his state with the

other clients when connecting to the server becomes possible again.

3.2 Subproblems Encountered During Implementation

During this process of analyzing and implementing our offline mode solution we
noticed that our problem can be divided into multiple smaller subproblems, that, when
implemented correctly, would result in a correctly implemented offline mode document

state synchronization.

4 Situation, where network is divided into mutually unreachable subnetworks.

18

3.2.1 Detecting a Network Partition

Early on the first such subproblem, we discovered was detection of network
partition. In order to activate the offline mode, we need to know that such even has
occurred, and online mode would result only in sending failed request to the unavailable

Server.

Upon detecting the event of network partition, the process of starting offline mode
will be started. This process requires saving all data necessary to restore same state even

after a page refresh.

The data that needs to be saved consists of all requests that weren’t sent yet and
are in a pending state as well as all requests that were sent and now are waiting for a
response from the server. Only once all these requests were safely persisted, we can start

the offline mode, where every change is stored locally.

Partition Detected Saving All Changes Saved

recent

changes

heck Connection
Reconnected

Connection Failed

Synchronize

with server -
Connection

State Synchronized Succesful

Figure 2 Offline mode state diagram

There are several ways we can detect a network partition. As all methods achieve
the required result that’s needed for the offline mode implementation, we will keep our

focus on the efficiency and handling of edge cases while comparing them.

3.2.1.1 Heartbeat

The first way of detecting that server is no longer reachable is a heartbeat. This

method works by sending a periodic request, usually in order of seconds to the server, to

19

confirm that response is received. In case no response from server is received at for a

heartbeat request, we can assume that network partition has occurred.

This solution is often employed in distributed network environments, where each
network node sends heartbeats to a dedicated master, or registry server keeping track of
working nodes. The main advantage this provides is that it is possible to apply auto
healing before the unavailable node is required.

However, the main disadvantage of heartbeat is that it requires additional network
traffic, in form of periodically sent request. And the fact that we can’t perform any auto
healing in case the unreachable clients are users, other method would be preferable.

3.2.1.2 Browser Callback

Another seemingly correct approach, that would not result in an increased internet
communication is using the built-in browser events for connecting and disconnecting
from the network:

window.addEventListener('online', function() {}, false);
window.addEventListener('offline', function() {}, false);

This solution is rather naive as it does not detect all possible cases when user goes
offline. The event itself is implemented differently on each browser, with one common
pattern. All browsers use some properties or mechanisms of operating systems to figure

out if network interface is up, or internet connection is in some way enabled.

This however does not mean that server is reachable. There are numerous cases
when this event fails to trigger. In all these cases we need to start the offline mode, as
none of the performed changes reach the server:

e Client is connected to a network that is not a part of internet network.

e Client is in a network that has server’s port or IP blocked.

e Network partition occurred along the way to the server and therefore server is
unreachable from the client’s network.

e Client has lost internet connection; however, his operating system has failed to

register the event yet.

20

e Server has disconnected from the internet, making it unreachable, while client still

has stable internet connection.

While very simple to implement and supported by all major browser vendors, due
to the number of edge cases when network partition would not be detected, we decided
to ignore this option completely.

3.2.1.3 Request Timeout

Another possible solution is utilizing the request timeout feature. This feature
starts a timer for each request sent to the server. If a successful® response is not received
in the requested timeframe we conclude that the network partition has occurred, and we

need to start the offline mode.

From the start we can see that this solution would not increase the network traffic,
as it never sends any additional requests, besides the ones the client would send anyway.
Additionally, no edge cases where network partition would not be detected are not
possible, as not being able to communicate with the server is what defines network

partition in our case.

For our use in web application with offline mode, this solution is superior to the
previously suggested ones. The only disadvantage this solution presents is that it does not
detect the partition as it happens, but only after the client tries to communicate with the

Server.

This disadvantage is not an issue, as we need a transparent solution that works
without the user having to react to the event of going offline anyway. Additionally, it
guarantees us that at the time of enabling offline mode, there will be at least one request
in a pending state, waiting to be sent to the server, that needs to be persisted for offline

use.

S It is possible to receive a response even in case the server is unreachable. However, this response could
be sent by routers on the way to the server, rather than by the server itself. The point of this response is to
indicate what issue is causing the network partition and therefore is considered an error response.

21

3.2.1.4 Detecting Reconnection

Like the problem of detecting network partitions, we also need to detect that server
Is reachable from the client once again. Once that happens, we can fully synchronize the
local state with the server. If this synchronization finishes successfully, we can transition

back to the online mode.

Unfortunately, unlike the detection that network was partitioned, we don’t have
many options here. The only reliable way to find out that server is by polling. Polling
works similar to the heartbeat in a way, that it periodically sends ping requests to the

server in a specified time interval.

Client Server

Ping

Response

Figure 3 Reconnection polling
The seeming issue with this approach is increased network traffic. However, most
of the time this polling is used is in cases, when client has no internet connection.

Sending a request in a computer with no internet connection has no real impact on the

internet traffic and only minor effect on the client.

22

Even when sending a request is a cheap operation, it can be potentially harmful
on devices powered by batteries. Periodically sending a request means waking the
processor and network card up, both of which consume large amounts of power.

To improve on this, we can use the fact that once user loses connection and don’t
reconnect in a short time interval, it usually means they will be offline for a longer time

and therefore we can increase the time between polling requests.

Instead of having a constant timeout and sending a new request each time response
is not received in that timeframe, we can double the timeout and therefore make requests

less frequent, when we expect client to be offline for a longer time.

Since the timeout doubles each time, we can quickly end up in a situation, where
client sends only one request a day to check if connecting to the server is possible. To
prevent this unwanted issue, we would also need to set up some upper bound for the
timeouts, such that sending frequent requests is not wasting battery power but is still able

to reconnect in a reasonable time.

3.2.2 Choosing the Right Synchronization Method

When implementing collaboration systems, we can use an already implemented
library for synchronizing state across multiple clients. There are many options to choose
from, with the biggest differences in a collaborative system behavior coming from the

synchronization method that was used.

These methods describe how the state should be stored, what messages are sent to
the server and how to handle conflicts. As they are academically studied and proven to

work, they can serve as an abstraction we will base our offline mode upon.

3.2.2.1 Document Locking

The simplest possible way to keep state consistent among multiple users is by
locking the document. In its most basic form, this technique allows only one user to edit

the document at a time, while others have a read-only access to the document. This basic

23

form cannot be used to implement a collaborative system, as, by the definition, multiple
clients must be able to collaboratively edit the document at the same time.

To fix this issue, the document can be split into multiple smaller parts, each with
its own lock. With such fine grade locking, we could implement a collaborative system,
that would be conflict free, as no two users would be able to edit the same locked part of
the document at the same time.

However, after introducing this fine grade locking for subsections of the
document, we would lose the simplicity and introduce a new problem. In an environment
with unstable network connection, lock requests and releases could be potentially lost,
resulting in a client attempting to edit subsection he has no lock for, or worse, subsections

of the document remaining locked, with no client having the lock.

Additionally, while this method provides a simple mechanism to ensure consistent
state among users, it has not mechanism for merging state after reconnection. Leaving all
the implementation on the developers. Combined with the instability of this method when
using multiple locks for document subsections, it is unsuitable choice for our offline mode

implementation.

3.2.2.2 Conflict Free Replicated Data Types

Conflict Free Replicated Data Types, or CRDT for short are described in a paper
by Marc Shapiro, Nuno Preguica, Carlos Baquero and Marek Zawirski (Shapiro, et al.,
2011). The CRDT is the newest addition in the field of state synchronization. Despite it
being relatively new and unproven, it got quickly adopted by many databases, chat
systems and text editors due to its simplicity and ability to synchronize state without any

central server.

This ability to synchronize without server is the biggest advantage CRDT has over
the older synchronization solutions. It allows synchronization in Peer-to-Peer
applications and in distributed networks, where all clients need to share data between each
other (Smith, 2016).

24

Data synchronized using CRDT is guaranteed to be eventually consistent,
meaning that, given enough time, all clients will arrive at a consistent state, where

regardless what server state is queried, consistent response is returned every time.

The state synchronizing method based on CRDT works by storing state in a data
structure that is of the conflict free replicated data type. The benefits this data structure
provides lie in merging multiple different states. Whenever client changes their state and
wants to synchronize his new state with all other clients, all that is required is to send a

change operation.

The simplest examples of such conflict free data structure are a counter and a set,
where both have only get, add and subtract, or remove operations allowed. We can see
that no matter what operation is received, it’s impossible to arrive at a conflicting state.

Every time there is only one way to merge the operation, with deterministic result.

Figure 4 CRDT set synchronization

25

This is another point that makes CRDT attractive to developers. It makes merging
state easy and intuitive as it guarantees that no state conflicts will ever appear. While
simplicity has many advantages, mainly during eliminating edge cases and proving
correctness, inability to modify merging behavior can also be considered a disadvantage.
Specifically, in our scenario, we would like to ensure no data is lost upon reconnection.

Which would be impossible when using CRDT.

3.2.2.3 Operational Transformation

The most academically studied synchronization method is Operational
Transformation (also referred to as OT). Described in the late eighties (Concurrency
Control in Groupware Systems, 1989), this method is now the most versatile and

supported method for state synchronization.

The idea of OT synchronization is based on finding the intent of each submitted
operation performed on the document and transforming it in a way, that the original intent
of the change is preserved. This means, that if one client deleted the last word of the
document, while other client moved the last word to the front, the resulting intent would
be to delete the word in the front.

ABC ABC

Move id 1->id 0 \ Move id 1->id 0

Delete id 1

Delete id 0
BC

Figure 5 Operational Transformation

26

Preserving the intent of changes increases the chances that the changes performed
while offline will be merged correctly® on reconnection. However, this preservation gives
us no guarantee that the intent is guessed correctly and that it won’t change in case the
document state changes. For this reason, we cannot rely purely on the built-in merging

mechanism in our offline mode.

Besides working in a Client-Server architecture, ideal for offline mode
implementation, the main reason to consider OT as a synchronization method for us is its
versatility. Various extensions of this method can be used to solve problems with offline

mode implementation:

e Traditional OT supports transforming received operations only in one way,
such that clients are only able to add to the history of performed operations.
Conveniently, it is possible to implement a reverse transform function such
that using history of stored operations and current state it can perform undo
operations and create a view of the edited document displaying its past state.
This is extremely useful when merging state after reconnection, because
anything that was already stored on the server is guaranteed to be kept,
preventing any possible loss of already stored data.

e Another extension of this synchronization method improves its space
efficiency and ability to perform fast reconnections. This is achieved by
merging operations performed while offline into a fewer, more complex and

compact operations.

However, this method is not without problems. The first implementation
challenge is storing client state for offline mode. Saving all the required data and flags
without creating invalid state is very tricky, as the implementations of OT relies on several
arrays with operations that may not be valid after reopening new browser session.

Example of such array is list of inflight requests that are roundtripping to the server.

Another issue appears once we start synchronizing state after reconnecting. Due

to the nature of this method, there is no simple way to show the user full difference

®Merged in a way that results in an equal state to the state we would get by performing a manual merge.

27

between server state and client state. The only available alternative is viewing the
difference one operation at a time, which may have affected different parts of the
document. Viewing the difference in this way would lead to user having to scroll up and
down the document several times, just to perform the merge, before the synchronization

is done.

3.2.2.4 Differential Synchronization

A lesser known synchronization method, developed by Neil Fraser from Google
is Differential Synchronization (Neil Fraser Google, 2009). This method takes inspiration
from the idea employed in version control systems. These systems don’t require constant

network connection, making DS a strong candidate for our offline mode implementation.

The main benefit of this method lies in the fact, that changes don’t have to be
tracked as they are performed. This means we don’t need to track each operation
performed on the edited document. As a side effect it also assures us that time or space
complexity will not increase while working offline, because synchronization request

payload calculation is constrained by the document size, rather than the number changes.

Edits
[——
Client Client Server | | Server Server
Doc Shadow Backup Shadow Doc
B y
. -'. — S
» Client - Server Patch Patch

Edits

Figure 6 Differential Synchronization Architecture

Image source: https://neil.fraser.name/writing/sync/

28

https://neil.fraser.name/writing/sync/

Since differences are calculated, rather than stored, implementing offline storage
will be a simple task without any edge cases, where only a copy of the current state is
stored. This difference calculation, however, needs two versions of the state to work. One
with client changes and the other, serving as a state copy shared by the client and the
server, this copy is referred to as shadow in the papers by Neil Fraser. In case of larger
state, it is possible that we won’t be able to fit both client state and server state copy inside

browser storage, posing a serious issue for our offline mode.

Same as with storing data for offline use, performing reconnection merge is as
simple as merging the current state with the server one and submitting a final difference.
There is an issue with this merging. Since the method does not preserve intent of
performed actions, automatic fuzzy merge does a bad job at doing what the user intended

to do and so it might delete some of the users work.

To battle the issue of fuzzy merge imperfections, one option is to implement a
history of changes that would allow undo and commit attribution, by storing each
difference the server receives in a database and implementing a reverse patch function for
both the client and server that would take difference and return a state before the
difference was applied. The other option, inspired by the Git version control system is to

force the user to perform a manual merge and only then submit the changes.

Another, albeit minor issue of this method is that it requires keeping shadow for
each client. Which should be garbage collected in the original design as they are no longer
valid after the client disconnects. This is not the case with offline mode. The client can
disconnect and after reconnecting later the server should be able to recover and keep using

the stored shadow.

3.2.3 Optimizing Space and Time Complexity

When working in online mode, performed changes can be submitted periodically
and freed from the memory once server acknowledgment arrives. In offline mode
however, this is not an option. Until the client regains connection, changes are

accumulating, which could result in unacceptable memory consumption. For this reason,

29

we will define a way to measure space complexity of our solution, which we will take

into consideration during implementation.

Various synchronization methods operate on different aspects of state or
operations. Each of these aspects pops up in some way in memory or time complexity of
their synchronization. We will refer to the state size itself as a n, history of performed

operations as h, and the number of unsubmitted operations as c.

Another issue is a time complexity of merging changes. A 0(n?) merge algorithm
is acceptable, when there is only one change submitted at a time. However, in case of
reconnection the client might suddenly submit too many operations for server to handle.
This would result in a situation almost equal to not sending any data at all.

The reason space complexity is important to us are also browser storage
limitations. Depending on the browser and storage mechanism, tight memory limits as
low as 2.5MB are set up for each application. If we don’t store the state or operations in
an efficient manner, we might run out of space and start losing client data on page refresh.

3.2.4 Resolving Significant State Conflicts

The biggest challenge offline mode presents is the way merging state conflicts
that could lead to loss of important data is performed. Since client can be offline for a
longer period and by the time of reconnection, the client and server state can differ widely,
and automatic conflict resolution behavior might not be the best solution as it could

silently delete important parts of the server state or client changes.

Since automatic merge is out of the question our options for resolving these
conflicts are very limited. For each operation, difference or changed part of the document

we must ask the user how the conflict should be handled.

This prompting the user can be done in several ways. One simple, although not
user-friendly way is to show a dialog for each operation received, asking the user if the

operation should, or should not be applied. This solution not only lacking in user

30

experience, it also does not allow creating a state that is mix’ of both server and client
state.

A very robust solution is showing the user preview of both server and client state
and asking him to create a new state with both previewed states manually merged into it.
This way, also called two-way merge we can ensure that merging is done correctly and

without much impact on user experience if the merging is not required often.

The last issue with merging state conflicts is with states stored in data structures
different from strings and arrays. For merging conflicts in maps, or JSON objects, a
system must be defined, for translating between manually merged changes in our data

representation into a JSON representation and back.

3.2.4.1 Detecting Large State Changes

Before we start the manual merge process, we also need to ensure that it is needed.
In case the user has not performed any changes while offline or was disconnected for a
short period of time, which happens if the client has unstable internet connection, manual
merge might not be required, and we can skip the step entirely.

Asking user to resolve state conflicts too often would decrease user experience of
applications using the offline mode. For this reason, asking for manual merge on every
reconnection is unwanted behavior. Which leaves us with question: What metric do we

use for triggering the manual merge procedure?

In all cases we want to prompt the user to merge changes only after the
reconnection happens. One metric we can introduce is how much different is the server
state from the client state, either by counting the operations or by looking at the size of
received state difference. The drawback of this method is that it has no way to tell how
important the made changes are. Even when not much has changed, the introduced
changes might be too significant to leave them to a fuzzy merge mechanism.

" If the original state was “A”, client one “A” and server one “AB”, by mixing the states during merge, we
could arrive at “AB” state, that combines both server and client one. This is achieved by manual merge
without directly accepting, nor rejecting the client change, which would result in either “AB” or “AB”
state.

31

A feature that solves this problem is using time passed from last server
synchronization as a metric. This way we would perform fuzzy merge only in cases when
users see the results and are able to correct them in case of incorrectly merged state. This
could potentially prompt the user to perform a manual merge over a singled fixed typo in

text, just because he was offline for longer time.

Thankfully both approaches can be combined to build a solution that would
minimize the drawbacks of each and prompt the user only in cases when manual merge

is the only way to guarantee good user experience.

32

4 Defined Architecture

Now that we have each subproblem defined, all that is needed for a working
offline mode solution is to define a viable solution to each subproblem. We will proceed
with suggested architecture for offline mode that fulfills all requirements we set in the
second chapter.

This architecture is kept abstract and free of implementation details so that you
can implement it freely using any technology stack. While this architecture only serves
as a reference, we recommend following it as decisions made in resolving one subproblem

often affect the solutions of next subproblems offline mode implementation presents.

4.1 Choosing and Integrating a Synchronization Method

In order to implement an offline mode in a collaboration system, we first need a
working version of such system working when all clients are constantly online. For this
purpose, we need to choose the synchronization method most suitable for our
requirements. Once this method is chosen an offline mode can be written on top of it an

extension.

We ruled out CRDT (see chapter 3.2.2) since its peer to peer architecture does not
allow us to easily store and propagate changes. These functionalities are present in Client-

Server architecture utilized by DS and OT synchronization methods.

Out of these two options we recommend choosing DS over OT as it allows for
simple manual merge implementation used after reconnection. This functionality is
critical for offline mode implementation and as such should be our priority. Besides this
advantage, DS representation of state is much simpler, thus removing many edge cases

when saving and restoring state in browser.

4.1.1 Server-side integration

Since DS operates using diff() and patch() functions, it is essential we define

the format in which differences are sent to the client®. We do this in a way that client can

8 The other way around, from the client to the server can remain unchanged, as the server never performs
manual merge.

33

easily display information needed for a manual merge procedure. We recommend sending

differences with following information:

e Operation result, stating if the following content was added or removed®.
e Position of the change. This could be an XPath or line number depending on a
format of our state.

e Content that should be removed or added inside patch algorithm.

Another major change that needs to be introduced on the server is a concept of
endless sessions. Since client now keeps his data stored indefinitely and can reconnect at
any time, it is needed to persist the shared shadow on the server as well. This can be done
by treating each session as a cached object that is primarily stored in the backend
database. If memory starts running low, or some time passes since the last request from

the client, last used shadows are persisted and forgotten to free up server resources.

An optional improvement upon the concept of endless sessions is a disconnect
request. Before the client closes his application, he can choose to manually help server
free up his session by sending a request indicating that no additional communication will

occur in the current session.

4.1.1.1 Persistence

By introducing the concept of endless sessions, we quietly introduced a new
requirement for our Server-side architecture. Since losing common shadow on the server
would result in a situation, where server is unable to perform patch on client data, we

need a way to persist this part of session data in all cases™®.

The general approach for persisting data, introducing database to the system, is
enough here. The database can store client shadow when session is cached out. And later,

queried back using unique user, or session identifier for later use.

® This result is usually displayed as a + for added and — for removed content on each line the change
relates to.

10 Together with shadow a backup shadow should also be stored. This backup is also documented in the
original DS papers and is used to ensure consistency between the server and client even in edge case
scenarios.

34

In an extended version of the system, this database could also be used to provide
version history, for undo support. In this case, each difference would be stored together
with its session, or user id and some version identifier, in a form of timestamp, or

incremental counter.

4.1.2 Client-side integration

With all the server-side requirements out of the way, we can move onto the client
part. As client is the main consumer of our offline mode, the architecture on this end

requires more changes than on the server.

4.1.2.1 Reconnecting from Offline Mode

The first and primary requirement for offline mode is ability to reconnect. For this
purpose, a simple ping request can be introduced (See chapter 3.2.1). In case any of our
sent requests does not receive a response from the server we can declare that we are in a
disconnected state and setup our reconnection discovery mechanism. This works by
periodically, in equally long, or increasing intervals, sending the ping request to the server
and waiting for response. During this pinging we assume no response is returned. In case
when server responds we are reconnected and can start merging our state with the server

one.

As a part of server ping response, the difference between server state and client
shadow should be sent. Using this difference, we decide if manual merge is needed and
ask client or automatically merge according to that. After merging is successful, we now
have all the server changes locally, however, server still does not have changes from the
client. To fix this, the client can now freely calculate difference and submit the changes

to the server just like in the online mode.

35

Client

Edit document i
I
|

Reconnection Ping
B

Reconnection Ping

Finish editing m
ET— ; | }
Reconnection Ping |
|
|

Get Shadow

Return Shadow

Session Timeout

Calculate Diff i
State Difference i
Start Merge ¢ o !
,,,,,,,,,,, S e | |
! I
1 1
! I
| |
|
Calculate Diff ; i
| |
State Difference | |
1 ‘ i
|
Merge i
|
|
|
|
|
|
|
|
|

Save Shadow

Figure 7 Offline Mode Reconnection

Cases where connection gets lost after the client has merged his state and updated
shadow, but the changes got lost on the way to the server, or where packets sent from the
server don’t arrive to the client are handled just like in online mode and don’t require any

additional changes.

36

4.1.2.2 Persisting Local Changes

Another architectural change that is required on the client is keeping all the
performed changes even after the browser session ends*!. First, this ensures that no data
is lost after refreshing the webpage, when users start making sure that connection is in
fact lost. Just like with flipping light switch, when electricity is out. It is natural for users

to attempt to reload websites when they stop responding.

The secondary purpose of this persistence is allowing users to work even when no
connection is present. This way they can freely open the application, make some changes

and close it without the fear of losing any work they had just done.

When offline mode is activated, instead of attempting to submit the changes to the
server, new snapshot of client state is saved. This snapshot is later retrieved when
reloading the application and cleared every time changes are successfully submitted to

the server'?,

4.1.2.3 What Data Needs to be Persisted?

We have mentioned persisting changes, however, depending on the
synchronization method of choice there is no single variable holding all the changes.
Differential synchronization operates on calculated differences®®, client state and shadow
which should be same on both client and server and a session identifier used for endless

sessions.

Even though differences can be calculated each time without any significant
performance, there is a need to persist them. In edge cases where packets are lost on the
way between client and the server, they are sent together with their version identifier in
order to synchronize shadows back to a consistent state. The other attributes of our
system, however, need to be stored. Shadow and session id, mapping server shadow to

this client session need to be saved in order to allow patching and calculating differences

11 This happens when browser tab is closed. Reloading or refreshing the website does not end the session.
2 1f your implementation of significant state conflict does not trigger manual merge if no client changes
were performed, this step is optional as upon reloading, synchronization with the server is required
anyway.

13 Which are stored if they were scheduled for submit, but server response from the last change submit
hasn’t arrived yet.

37

that are consistent with the server. Client state holds all the performed changes and as
such it is important that we also persist this attribute.

4.1.3 Conflict Resolution Changes

We’ve mentioned previously that DS synchronizes server and client states by
performing a patch mechanism. In online mode this is represented by a function that
automatically performs a fuzzy merge by taking current state and received differences
and returning a new state that is equal to the sender’s state at the time of submitting
differences.

This behavior needs to be changed after reconnecting as automatic merge might
remove important data that isn’t easily replaced (See chapter 3.2.4). More precisely it
needs to be changed in a way that when significant changes were introduced, we leave

the merging on the user, instead of an algorithm.

This reconnection merge happens in three steps. First a difference is received from
the server. In the second step a significant state change detection algorithm gives us the
information if manual merge is in fact required. It it’s not, we proceed by doing the regular
automatic fuzzy merge. Otherwise a new state with current state and server differences is
displayed in a user-friendly manner for merging. External diff viewers'* can be used for

this purpose.

While user performs the manual merge, we can detect that all conflicts were
resolved. To further increase the user experience of applications using our offline mode
and prevent any parsing errors®®, state is periodically checked if all conflicts were
resolved and document state is valid, instead of giving the user a submit button for

confirming that he has resolved all conflicts.

After such significant conflict is resolved, merged state can be submitted to the
server and offline mode disabled by clearing persisted data and resetting any variables

indicating that offline mode is enabled.

14 Program that lets user resolve merge conflicts inside Git version control system.
15 Information added to the state for the purpose of merging could cause issues if not removed.

38

4.1.4 Detecting Conflicts that Require Manual Merge

A significant state conflict detection algorithm must be present for the offline
mode conflict resolution to work. The ability to tell when significant state change
occurred is used to prevent frequent manual merges for users that have a working,

although frequently outing internet connection.

There are several ways to do this detection (see chapter 3.2.4.1), all of which are
heuristic in nature. Out of the possible options we concluded that a solution incorporating

both, time tracking, and difference size would yield best results.

As a good starting point, we declare any state difference as significant if both
options are true. If more than 2 minutes® have passed since the last successful submit!’.
Additionally, if the changes client performed any difference in the time that has passed
since last difference calculation. If no changes were made on the client side, we can

quickly accept any server-side changes without the fear of incorrect merge.

16 This value can be tweaked depending on the network conditions and severity of manual merges.

17 Tracking time from start of the offline mode could be unreliable as it is started only after we discover
network partition. This discovery could potentially occur significantly later than the partition occurred.
Therefore, it’s required to track time from the last success response from the server.

39

Difference
Received

YES Offline Mode NO

(= Enabled
Calculate
Passed
Time
Y
YES > 2 Minutes NO—
Passed
Client
Difference
YES NO
l Tr \/
Manual Automatic Automatic
Merge Merge Merge
NO
All Conflicts
Merged
l YES
v
|

Figure 8 Conflict Resolution Diagram
In the cases when online mode is enabled, or server has sent empty differences,
this procedure is skipped as we can guarantee that no significant state changes have

occurred.

40

5 Implementation Details

We started out implementation by looking for already existing implementations
and libraries that we could use in our offline mode. This way we could significantly

decrease the amount of code we have to write to achieve the same result.

As our architecture relies on already existing solution for online synchronization
using DS method, we searched for libraries that could provide this functionality on both
the server and the client. One such library that we have found was diffsync (Monschke,
2015). Since our offline mode could not work without this library, we decided to extend

it with our solution.

5.1 Library Extension

After a closer look at the library’s code, we noticed that significant parts of the
DS synchronization method were not implemented. These include using backup, which
is crucial in cases, where packets get lost. This backup is only stored, but never used on
the server and on the client, it’s not stored at all. Acknowledgments for sent requests are
also handled incorrectly and instead of removing only acknowledged edits, all edits are

removed?8, once a specific type of acknowledgment is received.

Due to these braking changes we decided not to use this library. Rather than fix
all found and possibly hidden issues with its implementation, we decided to create our
own implementation of DS. Our code is heavily inspired by the diffsync library, however
with special attention paid to edge cases and error handling.

5.2 Server Implementation

While server side is free to use any other DS implementation, due to simplicity
and consistency reasons we decided to use our new library on both client and server side.
To calculate differences and perform patches, the library utilizes jsondiffpatch (Eidelman,
2018) library. Because same library is utilized on both ends for difference processing,
there is no need for additional mapping between client-side and server-side generated

differences.

18 Even those that were never sent.

41

As a first modification, we have changed the format, this jsondiffpatch library
uses, when sending differences from the server to the client. In our case, disabling
detection of moved object was enough to comply with our defined architecture.

5.2.1 Server Persistence

When it comes to persisting user changes, we had to extend the original library
design with two new mechanisms. The first one being endless sessions and the second

one, dependent on endless session implementation is client change persistence.

The endless session implementation is primarily server-side. It encompasses a
session id generation'® and adding a persistence mechanism. Since our library already
supports database connection using an adapter pattern all that was left to do is extending

this adapter interface to support session id.

For simplicity reasons we left out any caching on the server side and all storage is
done using supplied persistent data adapter. If needed caching can be implemented as a
part of this adapter in a way that’s similar to the way Java Persistence API handles data

caching.

For the id generation we used a custom UUID4 generator, as this format is widely
supported by many databases. If more efficient solution is needed and supported,
developers using our extension can easily override our default id generation as a part of

their database adapter.

function generateSessionId() {
return ' XXXXXXXX-XXXX-4XXX-YXXX-XXXXXXXXXXXX "' .replace(/[xy]/g, ¢ => {

let r = Math.random() * 16 | @, v = c == 'x' ? r : (r & 0x3 | 0x8);
return v.toString(16);
1

}

19 1d generation is done on the server-side, as opposed to the client-side, because the id must be stored in a
database and allows us to use autoincrementing 1D, or any other format easily stored in a database like
UUID. Additionally, this removes the coupling between client and backend database implementation.

42

5.3 Client Implementation

On the client we had to implement an offline storage solution, together with
reconnection mechanism that can detect that server is reachable again and then merge

states without any important data loss.

5.3.1 Reconnection implementation

The first architectural change we made to the diffsync library, on the client was
adding a reconnection mechanism. This consists of catching an error when trying to
synchronize with the server. An error is guaranteed to be returned only on network errors,

when using fetch API.

This reconnection mechanism consists of periodically pinging the server and
waiting for its difference. For better user experience we progressively increase the time
interval that happens between reconnection ping requests by one fifth of the previous
time. If the user expects to be offline for half an hour, there is no need to send a ping

request every ten seconds.

5.3.2 Large conflict resolution

Once we get the initial response from the server back with data to merge, we start
by deciding if automatic merge can be performed. By default, we consider a significant
merge anything that happened after thirty seconds after last server connection and
contains any edits, since there is no reason to start manual merge in case server state has

not changed in the meantime.

After a decision is made, that manual merge must be performed we give the
developer using our library the choice of how this situation is handled. A callback with
provided merge implementation is called. This callback provides the developer with
current state and a merged one and returns a merged state so that he can let user perform

the merge in a user-friendly way.

After a manual merge, merge result is sent to the server and offline mode disabled
upon successful response. If sending the request fails, we keep sending ping requests, but

keep the merged state.

43

5.3.3 Client-Side persistence

To allow the same kind of flexibility with persistence on the client as on the server
side. We decided to also use adapter pattern for the client-side storage of performed
changes. The API for this adapter is similar to the one for server-side persistent storage,
with getData(), clearData(), setData() and hasData() methods.

This adapter is supplied with identifier of shared document?® and all client-side
data related to the synchronization. This includes shared document identifier, endless
session identifier, local state, shadow, backup, unconfirmed edits and both client and

server document versions.

5.4 Testing

To make sure our solution works we tested the implementation as it was created.
Most of the testing was done manually by performing some changes on multiple opened
browser windows and disconnecting from the network on a demo GUI project, using a
rich-text editor. We observed both simple scenarios, where no conflicts were present and

scenarios where clients directly changed same data.

To improve the stability of our library and to decrease the change of any bugs in
our code, we introduced Typescript as a development dependency into our project. This
allowed us to use types and enforced many rules, which were able to detect hard to find

errors in our code.

Additionally, to make our implementation as stable as possible, together with the
library we provided some unit tests that would detect any breaking changes upon our

offline mode implementation.

5.4.1 Reasoning Behind Stability of Offline Mode

We have based our implementation on papers by Neil Fraser on Differential
Synchronization. There he goes into detail about why his solution works, arrives at a

consistent state and never leads to a data loss.

20 In the code we refer to this shared document as room, to keep similarity with diffsync library. Its
terminology was based on the terminology of socket.io, where rooms are used for broadcasting.

44

If our offline implementation does not introduce any new concept to the online
solution, it is also guaranteed to work with already mentioned characteristics. Therefore,
we made sure not to modify the way the method works in online mode and only added a

reconnection mechanism based on already proven principles.

In cases, where all communication is done in loops, where one of the sides initiates
a synchronization request by sending all edits and the other side responds with its edits,
the online mode is guaranteed to work. This holds true even for cases, where either

packets, whole request, or response are lost.

In the case of reconnection, we create two such loops. The ping request stimulates
the start of the first loop, where server response to the ping is equal to a synchronization
request starting the loop. Next after merging, the state is submitted to the server, which,

while is sent as a request, serves as a response to the first sync loop.

45

Ping Requset

\ .
'Sync Loop
s 1
| |
,,,,,,,,,,,,,,,,,,,,,,,,,, S |
Reconnection Data !
i
Merge Result |
4 .
I
|
L
Sync Loop

Synchronization Response

Sync Loop

Synchronization Request

Synchronizétion Response

Figure 9 Synchronization Loops on Reconnection
The actual response sent from the server now serves as a start of the second loop.
This loop simulates a behavior of packets lost on the way back to the initiator, by not
sending any response. However, this is fine, as on the next request sent, backup is used

to rollback on the next incoming sync request, returning us to a valid state.

46

6 Solution Analysis

With our solution designed and implemented it is now time to reflect on its
characteristics. We will start with the biggest benefit and that is time complexity. Since
our solution does not accumulate changes like other synchronization methods, its time
complexity is purely based on the size of state.

Calculating unsubmitted differences has the same characteristics as a Longest
Common Subsequence algorithm. This problem is solved using dynamic programming
in time 0 (n?) with the space complexity being 0(n) after some optimizations. Merging
states is significantly faster with only O(n + d) time and space complexity, where n +

m becomes the new state size.

The problematic part are client persistence limitations. While we solved this issue
by introducing adapter pattern and let another developer decide how the data is stored,
currently there is no solution that guarantees ability to store large state, also with its
backup and shadow. Minor improvement like running a compression algorithm before

storing our state would help with this problem, while also slow down the saving process.

While offline mode is working, users can’t undo their operations, or preview
change history. In case some user makes mistakes during manual merge, this change will
be definite after submission with no way of returning to the previous state. In the future
we could enhance this mode by adding a reverse patch function that would take difference
stored on the server and revert the state to its previous form. Such improvement would
also allow commit attribution, where we could map each section of the document to the
user that added it.

47

Conclusion

As aresult of this thesis we implemented an offline mode solution for
collaborative systems. This solution fulfills all requirements we set in the first chapter for

how an ideal offline solution works.

It allows users to continue working even in unfavorable network conditions.
Frequent, or long disconnections don’t cause any collaboration issues when using our
solution. With original real-time online solution used when possible with no document

locking needed.

We designed the offline mode so that it does not require or use any proprietary or
paid solutions. As a part of open source library, any developer designing a new
collaboration system, or using a system relying on the same library can make a use of our
implementation. Without any impact on how the online mode was previously handled.

Our proposed architecture guarantees that users will lose no work even after they
run out of battery, must stop working or simply close the browser by accident. Retrieving
previous data and reconnecting presents no issues for users with unstable internet

connection no matter if it just goes out for short, long time periods.

48

Resume

V tejto praci sa zaoberame rieSenim problémov spdsobenych odpojenim klienta
zo siete, ktora synchronizuje stav medzi klientami. Tento problém sme sa rozhodli riesit’,
pretoze vV mnohych sférach prace, napriklad medicinskych, ci komerénych sa pouZzivaju

kolabora¢né systémy, ktoré vyzaduju nepretrzité pripojenie Kk sieti.

Tato poziadavka spdsobuje, ze mnoho l'udi nie je schopna pracovat’, alebo priamo
strati vSetky zmeny, ktoré sa nestihli poslat’ na server pred odpojenim, pricom
nespol’ahlivé siete su faktom zivota. V lepSom pripade takéto odpojenie spojene so stratou
dat len spdsobi frustraciu, v tom horsom to moéze ohrozit’ 'udské zivoty, ak sa diagndza

strati po¢as synchronizéacie so serverom.

Preto chceme navrhntt’ offline mod, ktory by bol jednoducho implementovatelny.
Nevyzadoval by Ziadne nepristupne, ci platené riesenia a taktiez by neafektoval spravanie
fungujuceho online rieSenia. Tento mod by dovolil pouzivatel'om nad’alej pokracovat
Vv praci aj v pripade ze nemaju aktualne spojenie so serverom. Garantoval by im, ze ich
data sa nestratia ani po uzavreti webového prehliadaca a taktiez, ze v pripade, ked’ bude

synchronizécia znovu mozna, sa nestratia ziadne dolezite data.

Nasou snahou pri tomto mode je taktiez zlepsit' zazitok pouzivatela pri préci
s kolaboracnymi systémami a teda sme brali ohl'ad aj na rychlost’ a dostupnost’ nasho
rieSenia, tak ako aj nutnost’ pouzivatel'a manualne rozhodovat’ ako sa maju zmeny zo
servera premietnut’ do lok&lneho dokumentu. Primarne sme na tento fakt prihliadali pri
znovu pripojeni, kde sa nad’alej vykonava tichd a automaticka synchronizécia v pripade,

Ze vieme jednoznacéne spravit’ tieto rozhodnutia.

Pred tym, nez sme nas problém zacali riesit’ sme analyzovali aktudlne dostupne
kolabora¢né systémy a rozne rieSenia offline modov. Tymito rieSeniami sme sa neskor

inspirovali a pouzivali ich kladne vlastnosti v nami navrhnutom systéme.

Prvym populadrnym kolaboracnym systémom, ktory sme analyzovali bol Office

365 od spolo¢nosti Microsoft. Tento systém plne zlyhal pri strate pripojenia. Zatial’ ¢o

49

pouzivatel'ovi zobrazil hlasku, ze sa jeho zmeny ukladajd, redlne k tomuto uloZeniu

nedoslo ani po znovu pripojeni do siete.

Zaujimavo tento problém riesil kolabora¢ny systém Box, ktory v pripade, ze sa
pouzivatel' odpojil mu systém nadalej dovolil pracovat. Nasledne, aby sa vyhol
synchronizécii a potencialnej strate dat, ulozil dokument ktory vznikol pocas offline
rezimu ako kopiu zdielaného s ¢islom na konci. Toto rieSenie avSak nedovoluje
pouzivatel'om pohodlne spolupracovat’ na jednom dokumente a vyzaduje, aby opakovane

manualne tieto dokumenty spéjali do jedného.

Spol'ahlivym rieSenim kolaborécie s offline moédom je Git verzovaci systéem.
Klienti v tomto systéme funguju primarne offline a len v pripade, ze sa rozhodn(svoje
zmeny zdiel’at’ si vypocitaju ¢o sa zmenilo, pripoja sa na server a zmeny odoslu. Aj ked’
z dévodu chybajlcej spatnej odozvy je toto rieSenie pre naSe ucely nepouzitelne
a zavazne by zasiahlo do online modu, koncept, akym sa posielaju zmeny len v pripade

potreby a ako sa garantuje Ze sa data nestratia vyhovuje mnohym nasim poziadavkam.

S predstavou, ako fungujd aktuélne existujuce systémy sme si zadefinovali nas
problém a rozdelili ho do mensich pod problémov, z ktorych sa sklada. Ak budeme vediet’

vyriesit’ kazdy jeden z tychto pod problémov, budeme mat fungujuce offline riesenie.

Prvym zadefinovanym pod problémom je detekcia znovu pripojenia. Webové
prehliadace primarne funguju s internetovym pripojenim a teda aj metody, ktoré ponukaju
na detekciu toho, Ze sa pripojenie na server stratilo a nasledne znovu spristupnilo st vel'mi

limitovane a neriesia mnoho krajnych pripadov.

Jedinym spolahlivym rieSenim je opakované posielanie poziadaviek na server s
o¢akavanim, ze zlyhaju. V pripade Ze nejaka z poziadaviek vréati validnl odpoved’, vieme,

Ze server je znovu dostupny zo siete a teda mézeme zacat’ synchronizaciu.

50

Ak chceme riesit’ konflikty, ktoré vznikli po dlh§om case na klientovi, musime
dobre poznat’ synchroniza¢nii metddu, ktora sa pouziva na dosiahnutie konzistentného

stavu pocas online rezimu.

Najjednoduchsou z tychto metéd je zamykanie dokumentu. Napriek jej
intuitivnosti a jednoduchosti, toto riesenie zlyhava, ked klient strati pripojenie a neuvolni
zamok nad dokumentom, alebo jeho castou. Dodatocne, aj ked” zamykanie predide

konfliktom v stave, nevieme ho vyuzit’ pocas offline reZimu.

CRDT a OT su aktuéalne najpopularnej$ie metddy na synchronizéciu, kde obe
funguju na baze propagovania vykonanych operécii.

V pripade Peer-to-Peer CRDT ide o posielanie vykonanych operacii medzi
vSetkych peerov v sieti a datova Struktura, nad ktorou sa tieto operécie vykonaju

garantuje, ze sa klienti dostan do konzistentného stavu.

OT riesi problém synchronizécie tak, ze centralny server ma prehlad’ o stavoch
jeho klientov a pri prijati nejakej zmeny ju pre kazdého klienta transformuje tak, aby sa
po jej aplikovani klient priblizil ku konzistentnému stavu.

Tieto metody sme vsak vylucili pri naSom offline rieseni kvéli ich Peer-to-Peer
architektare v pripade CRDT, ¢i kvoli komplexnosti a problematickosti implementacie

manualneho spajania stavu.

Poslednou metddou je DS, ktora sa inspiruje verzovacim systémom git. Taktiez
kalkuluje vykonané zmeny len v pripade potreby, zatial’ ¢o je druha strana schopna tieto
zmeny dolepit’ do aktualneho stavu. Zo strany implementécie offline rezimu, tato metoda
ma nedostatky len v kalkul&cii zmien, kde uz nie je jasné, akym spdsobom tieto zmeny

nastali a teda automatické spajanie stavu Castejsie vygeneruje nespravny stav.

Ked’ budeme mat zvolend synchronizaénii metddu, ktord je schopna offline

rezimu a taktiez efektivnej synchronizécie, pocas ktorej pouzivatel’ nebude musiet’ ¢akat’

o1

na server, kym posle vSetky zmeny, musime ur¢it’, ako sa budi riesit’ stavové konflikty

pocas znovu pripojenia.

Je zjavné, ze pokial’ sa poc¢as online rezimu ista ¢ast’ stavu nespravne spoji do
findlneho stavu, pouZivatelia, ktori konflikt sposobili budu schopni okamZite tato chybu
napravit’. V pripade offline mddu je avsak potrebné $pecialna pozornost’ pouzivatel'a na

to, aké zmeny prebehli, kym bol offline.

Funkénym, aj ked’ neprijemnym rieSenim problému je zakomponovanie historie.
V tomto pripade aj ked” dbjde k nespravne spojenému stavu budu pouzivali schopni

obnovit’ predosly.

Priatelenej$im rieSenim je manualne spajanie, kde pouzivatel'a poziadame, aby
namiesto systému spojil stav on. V tomto pripade je avSak nutné sa uistit’ ze automaticke
spajanie nie je vhodné, aby sme pouzivatel’a prili§ neotravovali. TaktieZ je nutné posielat’

zmeny vo formate, v ktorom ich bude systém schopni interpretovat’ pouzivatel'ovi.

Vysledkom tejto nasej analyzy pod problémov je jednoduchy navrh architektdry.
Kde sme rozhodli, ze na offline mdd je idealna metdda diferen¢nej synchronizacie, kvoli
jej Casovej zlozitosti, jednoduchosti implementécie a schopnosti jednoducho integrovat’

manualne rieSenie konfliktov.

Vysledné rieSenie zahifia potrebu upravit' serverovl cast’ synchronizacie s
nekone¢nymi seSnami. Ked’Ze je nutné, aby si server vzdycky pamétal, v akom stave sa

nachadzal klient v ¢ase poslednej synchronizécie.

Na Klientskej strane zase popisuje, upravy potrebné na perzistentné ukladanie
stavu, aby bol pouZzivatel’ schopni zatvorit’ prehliada¢ bez strachu, ze pride o svoju pracu.
Taktiez je popisane, ako sa riesia konflikty stavu po znovu pripojeni. Ako by mal vyzerat’
algoritmus rozhodujuci, ci je manualna synchronizacia nutna a spdsob, akym bude

prebiehat’.

52

Tuto architektiru sme nésledne implementovali za vyuzitia kniznice S otvorenym
zdrojovym kddom, umoziujucej synchronizovat’ pomocou diferen¢nej synchronizacie.
Po dodatoc¢nej analyze sme nasli nedostatky v tejto kniznici a teda namiesto jej rozsirenia
sme vytvorili vlastnd, in§pirovanu jej ideami. Nase rieSenie je, rovnako, ako tato kniznica

vol'ne dostupné s otvorenym zdrojovym kdodom.

V ramci implementicie sme sa zaoberali spdsobom, akym dovolime c¢o
najvolnej$iu a najjednoduchsiu integraciu nasho rieSenia do existujucich, ¢i novych

systémov.

Nase rieSenie Sme nakoniec testovali manualne aj pomocou jednotkovych testov.
Vysledne rieSenie ma akceptovatelnti Casovi zlozitost, pricom jeho najvacsim
problémom je ukladanie stavu klienta, kde moze dojst’ k pripadu, ze tlozisko nebude

schopné si vsetky data zapamatat’.

53

References

Concurrency Control in Groupware Systems. Clarence , Arthur Ellis and Simon , John
D Gibbs. 1989. Portland, Oregon, USA : SIGMOD '89 Proceedings of the 1989 ACM
SIGMOD international conference on Management of data, 1989. ISBN:0-89791-317-5.

DzZama, Jozef. 2017. NoSQL databazy a podpora offline rezimu. Thesis. KoSice :
Univerzita P.J. Saférika v Kogiciach PF UPJS UINF, 2017.

Eidelman, Benjamin. 2018. github.com/benjamine/jsondiffpatch.
github.com/benjamine/jsondiffpatch. [Online] Jun 25, 2018. [Cited: April 11, 2019.]
github.com/benjamine/jsondiffpatch.

Hickson, lan. 2016. Web Storage (Second Edition). www.w3.0rg. [Online] World Wide
Web Consortium, April 19, 2016. [Cited: April 11, 2019]
https://www.w3.0rg/TR/2016/REC-webstorage-20160419/#the-localstorage-attribute.

Korlub, Waldemar. 2017. enauczanie. enauczanie.pg.edu.pl. [Online] November 6,
2017. [Cited: April 11, 2019.]
https://enauczanie.pg.edu.pl/moodle/pluginfile.php/253757/mod_resource/content/0/07
%20Data%20synchonization.pdf.

Monschke, Jan. 2015. github.com/janmonschke/diffsync.
github.com/janmonschke/diffsync. [Online] MAY 27, 2015. [Cited: April 11, 2019.]
github.com/janmonschke/diffsync.

Neil Fraser Google. 2009. Differential Synchronization. 1600 Amphitheatre Parkway
Mountain View, CA, 94043 : s.n., 20009.

Shapiro, Margc, et al. 2011. Conflict-Free Replicated Data Types. [book auth.] Défago
Xavier, Petit Franck and Villain Vincent. Stabilization, safety, and security of distributed
systems. 13th international symposium, SSS 2011, , . Proceedings (pp.386-400).
Grenoble : 13th International Symposium, 2011.

Smith, Nate. 2016. https://news.ycombinator.com/item?id=12303100. Hacker News.
[Online] August 17, 2016. [Cited: April 21, 2019.]
https://news.ycombinator.com/item?id=12303100.

54

Table of Figures

FIGURE 1 CLIENT CHANGE PROPAGATIONveetietieitiesteaseesseesteessesseesseessessaessaessessnsssessseans 17
FIGURE 2 OFFLINE MODE STATE DIAGRAMccutiiiitieiteaieseesteesseaseesteessesseessaessessssssessseens 19
FIGURE 3 RECONNECTION POLLING ..vvtiiutvieiutieesieeestreeessteeesssesessseessssesssssesansssssnsssssnsesennns 22
FIGURE 4 CRDT SET SYNCHRONIZATION ...cuutiteiuiieesirieesiteeessneeessneessssesssssesssssessssssssnseseanes 25
FIGURE 5 OPERATIONAL TRANSFORMATIONcouviitieiteaseesieesteasseaseesseessesseessaessesssesseesseans 26
FIGURE 6 DIFFERENTIAL SYNCHRONIZATION ARCHITECTUREecveivieiecriesieesieeneesraeneeans 28
FIGURE 7 OFFLINE MODE RECONNECTION ...vvieiititeitiieesireeesireeesiseeessseesssseesnsnessssnessnseesanns 36
FIGURE 8 CONFLICT RESOLUTION DIAGRAMouiiiiiiiiiiieeitieeesiiee e e esive e ssiae e sniee e ssee e 40
FIGURE 9 SYNCHRONIZATION LOOPS ON RECONNECTION.......cciviitieiteeieseesieeseeesnesseenneans 46

55

7 Attachments

Attachment A: DVD medium — Our open source project inspired by the diffsync library,
containing Differential Synchronization and offline mode implementation.

56

