Special seminar to bachelor thesis

Simon Kocurek

University of Pavol Jozef Safarik in Kosice, Srobarova 2, 041 80 Kosice, Slovakia
rektor@upjs.sk

Abstract. In the paper we focus on solving the issues caused by going
offline inside a state synchronizing network. In order to keep the state
consistent across all clients in a network, various synchronization meth-
ods are used. These methods expect all clients to be available at any
time and don’t describe situations where some of the clients go offline
and later attempt to reconnect. First we analyze a sample of synchro-
nization methods, while comparing the ways they could support offline
mode. After that we choose the most fitting method and provide a de-
tailed description of possible modifications allowing client re-connections
without loss of data or state conflicts. Finally we implement and compare
these modifications.

Keywords: Synchronization - Offline - Implementation

1 Introduction

1.1 Problem statement

With time progressive web applications are becoming more and more popu-
lar. This movement aims to improve user experience, security and portability
of applications. While allowing more complex applications running inside web
browser environment.

With the rise of progressive web applications, many applications are starting
to take advantage of the fact that all clients are connected to the server. One
example of a system that requires this constant connection from all clients is a
collaborative system.

Collaborative systems are parts of application, where clients can collectively
operate on the same data. Each client can change the data and propagate the
change to all other clients.

These changes can cause conflicts in case the actions two or more clients ex-
ecuted are mutually exclusive. Example of such mutually exclusive actions are
editing and deleting same paragraph of text or adding different words on same
position in text.

2 Simon Koctirek

The problem we will tackle in this paper is a way to make collaborative systems
work with offline mode. This will enable the client separated from the server in
case of network partition to continue working and synchronize his state with the
other clients when establishing connection to the server becomes possible again.

1.2 Solved problems

Detecting network partition: In order to activate the offline mode the event
of network partition needs to be detected. Upon detection the offline mode will
be activated and all failed request will be stored locally.

We can detect that partition occurred by either polling the server in specified
time intervals. Other possible solution would be to catch failed request to the
server. If the request due to a network related issue we know that the partition
occurred.

As a part of partition detection problem, we need to check when the server
becomes available again to synchronize local state with the server one. Unfortu-
nately we have only one option here and that is pinging the server until we get
a response.

When we are sure we have stable connection to the server we can submit all
changes made since the partition occurred as well as download changes that were
made by other clients in that time. After this finishes and we no longer have any
changes stored locally, we can disable the offline mode.

Partition Detected Saving All Changes Saved

recent \
changes

-

Check Connection

)

econnected

J

Synchronize /

with server

State Synchronized Connection Succesful

Fig. 1. State diagram of offline mode transitions.

Document state synchronization with offline mode 3

Choosing synchronization method When implementing collaboration sys-
tems, we can use an already implemented library for synchronizing state across
multiple clients. There are many options to choose from, with biggest differences
coming from the synchronization method that was used.

These methods describe how the state should be stored, what messages are sent
to the server and how to handle conflicts. As they are academically studied and
proven to work, they can serve as an abstraction we will base our offline mode
upon.

1. Conflict Free Replicated Data Types

This is a synchronization method based on storing all data in a conflict
free replicated data type. This is a type with properties similar to set. Every
operation performed on this data type has to be commutative, associative
and idempotent.

In practice such data types are not flexible enough, so a modified version
of JSON format is used. This modification however isn’t perfect. There is
a need for custom garbage collector and a possibility of creating new data
during conflicts.

2. Operational Transformation

This synchronization method is among the oldest ones. With it’s approach
to synchronization being based on defining a set of operations that users
can perform on the data. And transforming these operations so that after
applying them, all clients arrive at the same state.

Approach used by operational transformation is difficult to implement.
This lead to multiple research papers being disputed and implementations
abandoned. However this method is one of the most versatile as it can be
modified to support undo actions, merging operations and is able to validate
data constraints set by the server.

3. Differential Synchronization

This method belongs to the less explored ones. Differential synchroniza-
tion takes inspiration from version control systems and works by defining a
diff () and merge() functions. These functions are used to calculate, what
changes user made to the data and to combine 2 different states.

The main issue with this method lies in data redundancy. In order to
perform diff() on states, it needs 2 additional copies of entire state on
both the server and client. This makes the method very unreasonable choice
for many online web applications.

4 Simon Koctirek

Optimizing space and time complexity We will explore space and time
complexities of various implementations of offline mode. The main focus will be
put on space complexity as storage space of websites is very limited. Usually set
by the user, the space can vary from 2.5MB of storage space to 10MB, or 50MB
if database is used.

While time complexity is mostly based on synchronization method we choose.
We can try to improve upon the initial complexities by merging changes made
across time into a single bigger change. This could mean that after reconnecting,
we could send all state to the server in a single request.

Resolving conflicts When working in an online mode, the changes in state are
minimal as every change is sent to the server immediately. This is reflected in
the conflict resolution algorithms. When state conflicts occur, they are resolved
automatically, with no user action required.

In our case, we need to be able to detect, when conflicts are large enough,
throwing away any changes can be harmful. In this case the default algorithm
merging behavior will be overridden and user prompted to make a decision what
changes should be kept.

2 Existing solutions

2.1 Google Docs

This is an example of a widely used collaboration system. With it’s implemen-
tation based on Operational Transformation method Google Docs serve as an
example that a robust collaborative system can be built using it.

The approach Google Docs chose for implementing offline mode is a bit lacking.
The application relies on a browser extension to support offline mode. In case
the extension is not installed a notification is shown and editing disabled.

In our case requiring an extension to enable usage of our offline mode is quite
cumbersome. Especially when we can use browser storage mechanisms to store
our data.

2.2 Meteor

A less known solution to synchronization in a collaboration system is a Meteor
framework. The meteor by itself does not provide a synchronization functionality.
What it does however provide is a web application solution with offline mode
working out of the box.

Document state synchronization with offline mode 5

In case the user loses connection to the server the clients stores all server
requests locally, while hiding the fact that server is unavailable by performing
optimistic updates.

This can be easily modified to work with any synchronization method by imple-
menting synchronization push notifications from the server. The main downside
of this however would be that we would be tied to a specific backend stack chosen
by the framework, which is unwanted if we want a general solution.

2.3 Git

Version control systems are applications that require offline synchronization.
The most popular example, known among developers is git. Git works in a way
similar to Differential Synchronization by using diffs and merges.

However the problem we face, the git version control system doesn’t have is a
need for low data redundancy as it has direct access to file system, while browser
storage limits us to something around 5 megabytes of data.

Because this system always works offline, the default conflict resolution strategy
is to let user merge everything by himself and allow submitting to the server only
once this is done.

3 Suggested solution

3.1 Choosing Synchronization method

In order to implement an offline mode in a collaboration system, we first need
a working version of such system working when all clients are constantly online.
For this purpose we need to choose the synchronization method most suitable
for our requirements. We will write our library with offline mode on top of this
method implementation.

Based on a comparison table, we chose Operational Transformation as a method

most suitable for offline mode. Since it has very data redundancy, as well as very
stable implementations to choose from.

Table 1. Synchronization method characteristics based on requirements

Conflict Resolution Pros Cons
Data type implementation Simple implementation Not reliable conflict resolution
CRDT .
Doesn’t require server Garbage collected
Server-side transform() function Guaranteed eventual consistency|Difficult implementation
oT Supports constraint checking Operations are not idempotent
Undo operation support
DS Custom diff () and merge() methods|Control over conflict resolution |High data redundancy
Low network overhead

6 Simon Koctirek

Based on this choice we looked for implementations usable in the browser.
Our solution will be built on top of Open Source javascript library ShareDB
(github.com/share/sharedb), as it provides us with simple websocket based
implementation of Operational Transformation.

3.2 Choosing storage mechanism

Before we start implementing the offline mode we need some storage mechanism,
where all changes made during offline session will be kept. While keeping all data
in memory would simplify the system as no additional API would be needed and
no storage limits would be presented, it would introduce a problem where user
would lose all his progress after his first page refresh.

As it is natural to refresh, when connection is lost, we need a solution that
works even after user refreshes the website. When we limit ourselves to widely
supported options, we are left with cookies, local storage and index db.

We ruled out cookies, as the data does not need to be sent to the server and
back on each request. While index db has higher limit for stored data size, it
requires structured data stored in tables, while operations we need to store are
JSON objects. Based on this reasoning we chose local storage as a mechanism,
that can survive both page refresh and session end, while storing performed
operations.

3.3 Implementation

Our plan for implementation is to start with a simple frontend and backend
demonstrating online and offline mode synchronization between clients. This
implementation will be built upon libraries that offer simple solution for online
synchronization.

We implement offline mode by intercepting each operation request and instead
of sending, store it in local storage. As we store in a key-value store, we will need
the operations stored in order they happened. As well as make sure our keys are
not in conflict anything someone using our library might also use.

After we have working offline mode, we start implementing state transitions
of online to offline mode and offline to online mode. Implementing this means
we need to listen to connection changes window.addEventListener (’offline’,
function) ; and window.addEventListener(’online’, function) ;. Then per-
form a needed backup, or synchronization based on state diagram defined before.

3.4 Comparisons

Once we have a working library with state transitions we will explore possible
optimizations for and sending operations to minimize reconnection latency and
space requirements.

