State complexity of partially nondeterministic automata -Nondeterministic choice of initial states

Šimon Huraj Tutor: RNDr. Juraj Šebej, PhD.

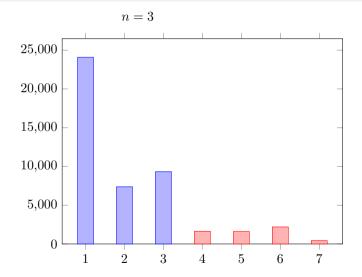
> Master's thesis presentation November 23, 2023

Definitions

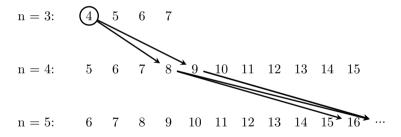
$_k \mathrm{DFA}^1$

k-entry deterministic finite-state automaton $({}_k DFA)$ is a quintuple $M = (Q, \Sigma, I, F, \delta)$ where

- $\bullet~Q$ is a finite set of states
- Σ is a finite set of input symbols
- I is a set of initial states, $I\subseteq Q$
- σ is a transition function, $\sigma:Q\times\Sigma\to Q$
- F is a set of final states, $F\subseteq Q$


State complexity

The state complexity of a language L accepted by some ${}_{k}DFA$ is the number of states in the minimal deterministic finite automaton (DFA) accepting the same language.


¹ (M. Holzer, K. Salomaa, and S. Yu. "On the State Complexity of k-Entry Deterministic Finite Automata". In: *Journal of Automata, Languages and Combinatorics* 6.4 [2001], pp. 453–466)

- Develop a program that accepts an automaton as input and generates all automata with various choices of initial states. Expand this program to generate all n-state automata. Additionally, create a program capable of determinizing and minimizing the automaton to ascertain the state complexity of the language it represents. Furthermore, ensure that the program is designed to leverage parallel computing.
- Investigate the deterministic state complexity of automata represented by nondeterministic automata, where the only nondeterminism is from a choice of initial states.
- Solution Examine the worst-case state complexity identified in 2.
- Explore the range of all obtainable state complexities from 2.
- Study the average state complexity from 2.

Magic nubmers

Magic numbers

Average state complexity

n	average s.c.	average s.c.	2^n
	(computations)	(formula)	(for comparison)
2	1.29	2.34	4
3	2.09	4.86	8
4	3.63	9.80	16
5	6.20	19.55	32
6	10.09	38.83	64
7	15.70	77.01	128

Note: Alphabet of size 2 (computations). Does not depend on alphabet size (formula).

Theorem 2

Average state complexity of a language represented by an *n*-state $_kDFA$ is at most $\frac{5}{8}2^n$.

Thank you for your attention