Partially nondeterministic automata - Nondeterministic choice of initial states

Bc. Šimon Huraj Tutor: RNDr. Juraj Šebej, PhD.

> Master's thesis defense May 27, 2025

Motivation

Motivation

DFA vs $_k$ DFA

Definition¹

Deterministic finite-state automaton DFA is a quintuple $D = (Q, \Sigma, \delta, i, F)$ where

- Q is a finite set of states
- Σ is a finite set of input symbols
- σ is a transition function, $\sigma: Q \times \Sigma \to Q$
- i is a initial state, $i \in Q$
- F is a set of final states, $F \subseteq Q$

$Definition^2$

k-entry deterministic finite-state automaton _kDFA is a quintuple $M = (Q, \Sigma, \delta, I, F)$ where

- Q is a finite set of states
- Σ is a finite set of input symbols
- σ is a transition function, $\sigma: Q \times \Sigma \to Q$
- I is a set of initial states, $I \subseteq Q$
- F is a set of final states, $F \subseteq Q$

¹ (J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages, and computation. Vol. 2. Addison-Wesley, 2003. ISBN: 978-0201441246)

² (M. Holzer, K. Salomaa, and S. Yu. "On the State Complexity of k-Entry Deterministic Finite Automata". In: *Journal of Automata, Languages and Combinatorics* 6.4 [2001], pp. 453–466)

$_k$ DFA example

$_k$ DFA example

$_k$ DFA example

Conversion state complexity - upper bound

Lemma 3.1

For every $n \in \mathbb{N}^+$ there exists a *n*-state _kDFA such that equivalent minimal DFA has exactly $2^n - 1$ states.

Example

Example

Conversion state complexity

3-state $_k\text{DFA} \rightarrow$ 4-state DFA ?

Conversion state complexity

11/24

Magic numbers problem

The question whether there exists a *n*-state $_k$ DFA whose equivalent minimal DFA has α states, for all $n, \alpha \in N^+$ satisfying $\alpha < 2^n$. A number α not satisfying this condition is called a magic number (for *n*).

Theorem 3.3

For every pair (n, α) , where $n, \alpha \in \mathbb{N}^+$ such that $\alpha \leq 2^n - 1$, there exists an *n*-state _kDFA whose equivalent minimal DFA has exactly α states. Moreover, the automata are over an alphabet of size at most 2n.

Magic numbers problem - range

Construction	Added	Effect
C1 (gray)	state n	$(n, \alpha) \rightarrow (n+1, \alpha)$
C2 (blue)	state n , letter a_n	$(n, \alpha) \rightarrow (n+1, 2\alpha)$
C3 (red)	state n , letters a_n , b_n	$(n,\alpha) \rightarrow (n+1,2\alpha+1)$

Magic numbers problem - range

4-state $_k\mathrm{DFA}$ \rightarrow 6-state DFA

n = 1: 1

4-state $_k\mathrm{DFA}$ \rightarrow 6-state DFA

4-state $_k\mathrm{DFA}$ \rightarrow 6-state DFA

4-state $_k\mathrm{DFA}$ \rightarrow 6-state DFA

Magic numbers problem - unary automata

Theorem 3.4

Let M be an n-state $_k$ DFA over a unary alphabet. Then, the equivalent minimal DFA has at most n states.

Moreover, for every pair (n, α) , where $n, \alpha \in \mathbb{N}^+$, there exists a unary *n*-state _kDFA such that its equivalent minimal DFA has exactly α states if and only if $\alpha \leq n$.

Lemma 3.7

For every pair (n, α) , where $n, \alpha \in \mathbb{N}^+$ such that $\alpha \leq n$, there exists a unary *n*-state _kDFA whose equivalent minimal DFA has exactly α states.

Average state complexity

Theorem 4.1^3

Average state complexity of a language represented by an n-state $_k$ DFA is at most

$$\frac{\sum_{i=1}^{n} \left(\binom{n}{i} \cdot \sum_{j=1}^{i} \binom{n}{j} \right)}{\sum_{i=1}^{n} \binom{n}{i}}$$

Theorem 4.3

Let $n \in \mathbb{N}^+$ then average state complexity of a language represented by an *n*-state family automaton is at most $5/8 \times 2^n$.

³ (Š. Huraj. Partially nondeterministic automata - Nondeterministic choice of initial states. Bachelor's thesis, P. J. Safarik University. 2023)

n	Average state complexity obtained by Theorem 4.1	Average state complexity obtained by Theorem 4.3	Actual average state complexity	2^n
2	2.34	2.5	1.39	4
3	4.86	5	2.25	8
4	9.80	10	3.81	16
5	19.55	20	6.37	32
6	38.83	40	10.24	64
7	77.01	80	15.81	128

Note: Alphabet of size 2 (computations). Does not depend on alphabet size (formulas).

- $_kDFA$ is a DFA except every state can be initial, similar as electrical (logical) circuit we can start it with different configurations
- computational results average s.c., distinct languages, number of distinct s.c., bigger alphabets
- formal result magic numbers problem with linear alphabet, unary magic numbers problem, average state complexity

Thank you for your attention

Question 1

Pre konverziu $_k$ DFA na DFA bolo dokázané horné ohraničenie $\frac{5}{8}2^n$ pre priemerný počet stavov. Dá sa niečo povedať o tom, ako sa toto horné ohraničenie zmení, ak je počet počiatočných stavov fixovaný, t.j., pre fixovanú hodnotu k?

Question 2

Strana 47, Lema 3.7: v čom je prínos tejto lemy oproti predošlej Vete 3.4 zo strany 44 ?