
P. J. Safarik University

Faculty of Science

STATE COMPLEXITY OF
PARTIALLY NONDETERMINISTIC

AUTOMATA -
NONDETERMINISTIC CHOICE OF

INITIAL STATES
MASTER’S THESIS

Field of Study: Computer Science
Institute: Institute of Computer Science
Tutor: RNDr. Juraj Šebej, PhD.

Košice 2025
Bc. Šimon Huraj

Contents

1 Definitions and Preliminaries 6

1.1 Notations . 6
1.2 Preliminaries . 7

2 Generation of families and automata 10

2.1 Parallel computing . 10
2.2 Parallel generation . 11
2.3 Goals . 12
2.4 Results . 13
2.5 Bigger alphabets . 14
2.6 Interesting observations . 16

3 Magic Numbers 19

3.1 Linear alphabet . 21
3.2 Unary alphabet . 27

4 Average state complexity and other results 29

4.1 Average state complexity . 29
4.2 Different approach to average state complexity 30

List of Figures

1.1 Three state automaton . 8

2.2 Six state kDFAs - state complexity . 13
2.3 Six state kDFAs - number of families with number of non-equivalent

languages . 14
2.4 Six state kDFAs - number of families with particular number of distinct

state complexities . 14

3.5 Three state automaton from Lemma 3.1. 20
3.6 Minimal determinized three state automaton 21
3.7 Magic numbers with linear alphabet . 22
3.8 General build-up of state complexity 22
3.9 Example automaton . 23
3.10 Default cases with 2-state kDFAs . 24
3.11 First phase of build-up . 25
3.12 Second phase of build-up . 26

4

List of Tables

2.1 Results for 2 state automata with alphabet of size 3 15
2.2 Results for 2 state automata with alphabet of size 3 15
2.3 Results for 3 state automata with alphabet of size 3 16
2.4 Results for 3 state automata with alphabet of size 4 17
2.5 Results for 4 state automata with alphabet of size 3 17

4.1 Comparison of average state complexities 31

5

Chapter 1

Definitions and Preliminaries

We assume that the reader has a basic understanding of automata theory as outlined
in Hopcroft and Ullman’s work [2].

1.1 Notations

A non-deterministic finite-state automaton (NFA) is a quintuple N = (Q, Σ, I, F, δ)
that consists of a finite set of states Q, finite set of input symbols Σ, a set of initial
states I ⊆ Q, a set of final states F ⊆ Q, and a transition function δ : Q × Σ → 2Q.

We call N a deterministic finite-state automaton (DFA) if |I| = 1 and |δ(q, a)| = 1
for all q ∈ Q and a ∈ Σ. Therefore instead of set of initial states I we denote single
initial state by i. The transition function δ of an NFA and DFA is extended as usual
to δ∗ : Q × Σ∗ → 2Q by δ∗(q, ϵ) = {q} and δ∗(q, aw) = ⋃

q′∈δ(q,a) δ∗(q′, w).
Then the language accepted by the DFA M = (Q, Σ, δ, i, F) is defined as

L(M) = {w ∈ Σ∗| such that δ(i, w) ∈ F}.

Analogously is defined language accepted by NFA.
State q ∈ Q is reachable in automaton N, if there is a qi ∈ I and α ∈ Σ∗ such that

δ(qi, α) = q. Two automata are equivalent if they accept the same language.
An NFA N = (Q, Σ, δ, I, F) can be converted to an equivalent DFA (2Q, Σ, δ′, i, F ′)

by the subset construction [2]: The transition function δ′ is defined by δ′(R, a) =⋃
r∈R δ(r, a) for each state R in 2Q and each symbol a in Σ, and a state R in 2Q is in

F ′ if R ∩ F ̸= ∅. We call the resulting DFA the subset automaton of the NFA N. The
subset automaton may not be minimal since some of its states may be unreachable
or equivalent to other states. The complete subset construction has been used in our
work, as it enables examination of unreachable states.

6

A DFA M is minimal if every DFA that is equivalent to M has at least as many
states as M. It is well-known that a DFA is minimal if all its states are reachable
from the initial state, and no two different states are equivalent. Given a DFA M =
(Q, Σ, δ, i, F), two states q1, q2 ∈ Q are said to be equivalent, denoted q1 ≈ q2, if for
every w ∈ Σ∗, δ∗(q1, w) ∈ F ⇐⇒ δ∗(q2, w) ∈ F . Two states that are not equivalent
are called distinguishable. For every regular language, the minimal DFA is unique, up
to the naming of the states. In our research, Hopcroft’s algorithm for minimization, as
described in [2], has been adopted with minor modifications. In particular, during the
use of the complete subset construction methodology, no unreachable state is removed.
However, unreachable states are removed later.

1.2 Preliminaries

Let k ≥ 1. A k-entry deterministic finite automaton (kDFA) is a quintuple M =
(Q, Σ, δ, I, F), where Q is a finite set of states, Σ a finite set of input symbols, δ :
Q × Σ → Q is the transition function, I ⊆ Q is the set of initial states with |I| = k,
and F ⊆ Q the set of final states [1]. Notice that a kDFA is an automaton with
multiple initial states and deterministic transitions.

We can see that a kDFA is defined as a special case of NFA. Note that the only
point of non-determinism is in the choice of initial states. Therefore, we can work
with it as a usual NFA.

Then the language accepted by the kDFA M = (Q, Σ, δ, I, F) is defined as L(M) =
{w ∈ Σ∗| there is an i ∈ I such that δ(i, w) ∈ F}.

Let k ≥ 1. A family automaton represents a group of kDFAs where all the au-
tomata in the particular group have equivalent set of states Q, set of input symbols
Σ, transition function δ and set of final states F . They only differ in the set of initial
states I. We can see that, family automaton is a deterministic automaton with no
initial states.

For one n-state family automaton there is 2n − 1 possibilities of choices of initial
states. So, family automaton represents 2n−1 different kDFAs or languages. Moreover,
notice that in general family automaton is not minimal, and such automaton does not
have to be connected.

Although people generally prefer the graphical interpretation of an automaton for
a better understanding of its structure, there are some occasions where alternative
representations are more suitable. Therefore, we will provide an alternative repre-

7

sentation of every family automaton and kDFA by three integers along with a brief
explanation of how to convert an automaton to these three integers and vice versa.

Let kDFA M be automaton with Q = {0, 1, . . . , n − 1}, so |Q| = n and Σ =
{0, 1, . . . , m−1}, so |Σ| = m. Let us provide the representation of M by three integers
denoted by (x, n, m), clearly n and m are already given. Next, we describe step-by-
step how to get x. First, get n.m digits number xδ in the base-n. Let i ∈ {0, ..., n} and
j ∈ {0, ..., m}, then (i+j)-th digit represents destination state for qi reading j-th letter
of alphabet. Secondly, create xF number, which is a binary number with n digits, the
value of i-th is 1 when qi is final, otherwise 0. Next, construct n digit number xI . The
value of i-th digit is 1 when qi is initial, otherwise 0. Convert xδ, xF , xI to base-10.
Finally, add all the numbers together by the formula:

x = (xδ ∗ 2n + xF) ∗ 2n + xI .

This completes encoding of kDFA by (x, n, m).
To transform x back to automaton we simply reverse the steps. Firstly, x mod 2n

converted to binary characterizes initial states. Then ⌊x/2n⌋ mod 2n converted to
binary characterizes final states. And finally, ⌊⌊x/2n⌋/2n⌋ converted to base-n number
characterizes transitions in automaton.

Example 1.1 (Conversion from automaton to number) Let’s have an automa-
ton M=(Q, Σ, δ, q0, F), Q={q0, q1, q2}, Σ={a,b}, F={q0} and transitions are as shown
on the Figure 1.1

q0

q1

q2

a

b

a

b

a, b

Figure 1.1: Three state automaton

8

Considering |Q| = n = 3 and |Σ| = m = 2, then xδ = (122100)3 = (468)10, xF =
(100)2 = (4)10 and xI = (101)2 = (5)10. Putting it all together

(468 ∗ 23 + 4) ∗ 23 + 5 = 29989

and that is a corresponding number to automaton M. In conclusion, we can describe
M with numbers (29989, 3, 2).

Example 1.2 (Conversion from number to automaton) Let’s start with an au-
tomaton number x = 29989, number of states n = 3 and length of alphabet m = 2.
Then we gradually extract numbers from x.

• xI = x mod 2n = 29989 mod 8 = 5 = 1012

• xF = ⌊x/2n⌋ mod 2n = ⌊29989/8⌋ mod 8 = 4 = 1002

• xδ = ⌊⌊29989/8⌋/8⌋ = 468 = 1221003

And now we can construct an automaton. It will have n states and alphabet of length
k. Without loss of generality Q = {q0, q1, q2} and Σ = {a, b}. From xI we observe
that q0 and q2 and initial, therefor I = {q0, q2}. From xF we observe that only q0

is final, therefore F = {q0}. And from xδ we acquire following: q0
a−→ q1, q0

b−→ q2,
q1

a−→ q2, q1
b−→ q1, q2

a−→ q0, q2
b−→ q0. Based on the three numbers, we were able to

obtain the automaton already showed on the Figure 1.1.

When working with family automaton, rather than kDFA, we prefer a more con-
venient representation. Fortunately, the algorithm stated above can also be applied
to family automaton with some customization. As noted in the definition, a family
automaton is also an automaton but without initial states. The algorithm works in
the same way as for individual automata, but in this case, it omits the part with initial
states. Therefore, the formula for converting an automaton to a number changes to

x = xδ ∗ 2n + xF .

Additionally, the reverse conversion does not take initial states into account.

9

Chapter 2

Generation of families and

automata

In this thesis, we build upon our previous work on this subject. We had some initial
generation results available for study. As generating more and more automata, espe-
cially with a higher number of states, becomes increasingly computationally intensive,
we opted to explore the realm of parallel computing.

2.1 Parallel computing

Parallel computing is a computational approach where multiple processes or threads
are executed simultaneously to solve a problem more efficiently. By dividing a task
into smaller sub-tasks and running them concurrently on multiple processors, paral-
lel computing can significantly reduce execution time and handle large datasets or
complex computations effectively.

Advantages include faster processing, efficient utilization of multi-core systems,
and the ability to solve problems that are computationally infeasible for sequential
computing. It is particularly beneficial in fields like scientific simulations, big data
analytics, and artificial intelligence.

However, disadvantages include the complexity of programming and debugging,
the overhead of managing parallel tasks, and potential inefficiencies due to synchro-
nization and communication between processes. Difficulties arise in ensuring load
balancing, minimizing contention for shared resources, and debugging concurrency-
related issues like race conditions and deadlocks. Additionally, not all problems are
easily parallelizable, limiting the applicability of this approach.

10

2.2 Parallel generation

The problem of generating families and their subsequent processing is in fact excellent
candidate for leveraging all the benefits of parallel computing. In our case, work can
be cleverly divided between multiple processors to safely bypass all the problems
when it comes to concurrent execution of a program. We know in advance what range
of families are we going to generate, therefore we can split this range of numbers
for families into disjoint sets, one for each available processor. Each processor then
handles all of his families, creating his own statistics. The only problematic point
could be joining the sub-results from all the sub-processes. However, as this is not
a computationally heavy task we can simply gather the results from every single
processor and join them sequentially in main thread of program.

Let us compare how the parallel version differ from the previous sequential ap-
proach. Algorithm 1 shows steps that were used for generating before the paralleliza-
tion.

Algorithm 1 Generating on Single Thread
Require: Set of integers S

1: for i from S do

2: Create family automaton for i based on the conversion algorithm provided
3: Determinize
4: Minimize
5: for every possible initial state do

6: Traverse the construction from chosen initial state
7: Calculate desired statistics
8: end for

9: end for

10: return Result for automata from input range

Algorithm 2 then shows the parallel version making use of the single thread algo-
rithm for the individual processors.

11

Algorithm 2 Generating on Multiple Threads
Require: Set of integers S, Number of Threads N

1: Divide S into sets S1, S2, . . . , SN approximately the same size
2: Create a thread pool with N threads
3: for i = 1 to N in parallel do

4: Assign Algorithm 1 with input Si to thread i

5: Execute thread i

6: end for

7: Wait for all threads to complete
8: Combine results from all threads
9: return Combined result

The result of this parallelization is straightforward. With N available processors
we obtain linear speedup. So, SN ∈ O(n).

2.3 Goals

In this thesis, we went in two directions of generating. The first one is in fact just a
continuation of previous work. We were able to generate all 6 state families. How-
ever, going any further was not possible even with the optimization in the form of
parallelism.

The other way was supposed to help us gather data for automata accepting lan-
guages over an alphabet of bigger size than 2. The goal behind this was to help us
formulate a hypothesis about how the size of the alphabet influences state complexity
and furthermore, the average state complexity of the class of automata we study. In
this case, we managed to accumulate results for the alphabet of size 3 for families up
to 4 states and for the alphabet of size 4 for families up to 3 states. As one can see,
with the increasing size of the alphabet the maximum size of families we are able to
analyze decreases. From the encoding provided in [?] it should be obvious that with
increasing alphabet size the number of families to be analysed grows exponentially
and so does the time needed for processing.

12

2.4 Results

In this section, we will provide data gathered through generation. Firstly let’s look
at results for 6 states family with binary alphabet. We will show charts with all the
important results, for the precise values, please refer to the tables at the end of this
section.

Figure 2.2 shows state complexity for individual 6 state kDFAs. Every bar rep-
resents the number of automata with a certain state complexity. All the values for
state complexities up to 63 are non-zero.

0 10 20 30 40 50 60 70
0

2 · 1011

4 · 1011

6 · 1011

8 · 1011

1 · 1012

1.2 · 1012

1.4 · 1012

1.6 · 1012

state complexity

au
to

m
at

a

Figure 2.2: Six state kDFAs - state complexity

Figure 2.3 below shows non-equivalent languages per family. One bar of the chart
represents a number of families that represent a certain number of non-equivalent
languages.

A number of distinct state complexities of 6 state families can be seen in Figure
2.4 below. Every bar of this chart represents a number of families that represent
automata with a particular number of distinct state complexities. 30 is the highest
number of distinct state complexities that any 6-state family have.

All these figures look similarly as their counterparts we already examined for
automata with fewer states.

13

0 10 20 30 40 50 60 70
0

1 · 109

2 · 109

3 · 109

4 · 109

5 · 109

languages

fa
m

ili
es

Figure 2.3: Six state kDFAs - number of families with number of non-equivalent
languages

0 10 20 30 40 50 60 70
0

2 · 109

4 · 109

6 · 109

8 · 109

1 · 1010

1.2 · 1010

1.4 · 1010

1.6 · 1010

1.8 · 1010

distinct state complexities

fa
m

ili
es

Figure 2.4: Six state kDFAs - number of families with particular number of distinct
state complexities

2.5 Bigger alphabets

In Section 2.4 all the results as well as all the results in previous work were all based
on the alphabet of size 2. Sometimes using a bigger alphabet could help to identify

14

State
complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 446 1 64 1 130
2 262 2 80 2 66
3 60 3 38 3 60
4 0 4 74 4 0

Table 2.1: Results for 2 state automata with alphabet of size 3

some key features of the model, therefore we have decided to examine it. Obviously,
increasing the size of the alphabet by any letters leads to an exponential increase in
the number of families needed to analyze. Taking into account all the optimization
performed on the program for generation, we still couldn’t go much further with the
number of states.

Here we will provide the results we were able to obtain for a number of states from
2 to 4. For 2 and 3 state automata we have a result for the alphabet of size up to 4.
For 4-state automata only the results for the alphabet of size 3 were possible.

Table 2.1 shows results for 2 states automata with the alphabet size 3. Every row
consists of 3 results. Let’s take the second row. The left part states that there are
262 kDFAs that have state complexity 2. The middle part states that there are 80
families that have 2 non-equivalent languages. The right side states that there are 66
families that have automata that have only 2 distinct values for state complexity.

State
complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 1662 1 256 1 514
2 1090 2 288 2 190
3 320 3 130 3 320
4 0 4 350 4 0

Table 2.2: Results for 2 state automata with alphabet of size 3

Table 2.2 is similar to Table 2.1, the only difference is that it shows results for 2
state automata with alphabet size 4.

Next Tables 2.3, 2.4 and 2.5 show similar data for gradually 3 state automata

15

State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 361659 1 19683 1 39750
2 117801 2 25242 2 20172
3 320856 3 9081 3 28278
4 45216 4 17214 4 62604
5 72504 5 9264 5 6660
6 154800 6 6414 6 0
7 29412 7 26388 7 0
8 0 8 44178 8 0

Table 2.3: Results for 3 state automata with alphabet of size 3

with an alphabet of size 3, 3 state automata with an alphabet of size 4 and 4 state
automata with an alphabet of size 3.

These results conclude our experiments with generation since increasing the num-
ber of states of the size of alphabet even further is so computationally heavy, that it
requires a lot more time or computational power. However, neither of them we have.

2.6 Interesting observations

By studying generated data we came across some interesting observations. As much
as we would like to prove them, due to time and capacity limitations, they only remain
hypotheses for now.

The first observation concerns about families. From the generation results, we
can connect data for a number of languages per family and the state complexity of
these languages. What is interesting is that there are many families that have many
distinct languages but these languages have small state complexities. This observation
goes back to our original motivation with logical circuits. When we look at the kDFA
as equivalent to the logical circuit, we can see that this circuit without connected
input pins can represent many simple logical functions. Simple in a way that the
same function can be calculated by a circuit with few logical gates, which in our case
represent states of automaton.

The second one is about automata themselves and their state complexity. When
dealing with average state complexity, we have thought about what operation does

16

State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 8348727 1 531441 1 1064418
2 1730337 2 595524 2 254316
3 9288396 3 117549 3 618618
4 812496 4 257058 4 2129952
5 1909176 5 147552 5 184224
6 6325668 6 111738 6 0
7 1345896 7 674172 7 0
8 0 8 1816494 8 0

Table 2.4: Results for 3 state automata with alphabet of size 4

State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 740012880 1 16777216 1 33736472
2 138149580 2 22100480 2 14560760
3 300521124 3 6865060 3 16167816
4 757745784 4 7684692 4 43059648
5 139083768 5 5360892 5 74322192
6 225484128 6 5250012 6 62873352
7 223478640 7 9650808 7 14852736
8 245708784 8 14651088 8 7555104
9 404812368 9 6059496 9 1224144
10 462502368 10 6186816 10 78768
11 116237232 11 13782672 11 4464
12 83761488 12 17947248 12 0
13 69439392 13 16477848 13 0
14 103533696 14 34881840 14 0
15 16060608 15 17440704 15 0
16 0 16 67318584 16 0

Table 2.5: Results for 4 state automata with alphabet of size 3

17

more. Does determinization increase the number of states more, or on the other
hand, does the minimization decrease the number of states more? Because then
the state complexity of n-state automaton is decided on whether determinization or
minimization "wins". We looked at the latter of the two operations more closely, but
only experimentally. The result was that the minimization reduces the number of
states by a constant factor somewhere right below 1,5. Meaning that if we have m

states after determinization, after minimization we will have m
1,5 .

18

Chapter 3

Magic Numbers

In this chapter, we will deal with so-called magic numbers. Let’s say we have 3 state

kDFA. We will construct a minimal deterministic DFA and observe how many states
it has. Clearly, it must be a number from the range 1 to 2n − 1. Now the question
stands: Is there a number of states that can’t be obtained from some kDFA? If there
is, the number is then called a magic number. The magic number doesn’t have to be
the only one, there can be multiple values that can’t be obtained.

In our case, for this class of automata, the hypothesis is that there are no magic
numbers. This hypothesis came from our experiments, where all the values of state
complexity where reached for kDFAs with 1 to 6 states. So, the hypothesis in other
words says, that for every pair (n, m), n ∈ N and m ∈ N, m ≤ 2n − 1, there exists a
n-states kDFA such that, minimal DFA recognizing the same language has exactly m

states.
Firstly we will show that the upper bound for m is reachable.

Lemma 3.1 For every n ∈ N there exists a n-state kDFA such that equivalent min-
imal DFA has exactly 2n − 1 states.

Proof.
We will construct a kDFA:

q0 q1 q2 · · · qn−2 qn−1

b

a

b
a

b

a a

b

a

b

a

19

Determinize this automaton while using complete subset construction to get DFA M

with 2n states, including a state that represents an empty subset of states. We will
exclude this one as it can’t be reached from the initial state because of the deter-
ministic structure. This new automaton will have one initial state {q0, q1, · · · , qn−1}.
Now we need to show that all 2n − 1 states are reachable from the initial state and
distinct.

Firstly, let us show that all 2n −1 states are distinct. Let F ′ be a set of final states
in M . Take S and T , distinct subsets of Q. Without loss of generality S ̸⊆ T , if not
we swap S and T . Next, take qs ∈ S, qs ̸∈ T , s = 0, · · · , n − 1 and word an−s. Then
qs

an−s

−−−→ q0, that means S ∈ F ′. As s is not in T and no other state transitions to
q0 with this word, T ̸∈ F ′. As a result for every state qi, i = 0, · · · , n − 1 an−i is a
distinction word.

Let us show the reachability now. For this, we will use two features of how is the
automaton constructed, contraction and rotation. Mark state as i-big when it is a
subset of size i. Our initial state is n-big. Using contraction, q1

b−→ q0, we will reach
(n − 1)-big state. Here using rotation, we can visit all other (n − 1)-big states. In
every (n−1)-big state we can use contraction as well to get to (n−2)-big state. Again
use rotation, and so on. Alternating contraction and rotation we will visit all 2n − 1
states.

Example 3.2 (Upper bound for state complexity) Let us take 3-state automa-
ton from previous Lemma.

q0 q1 q2

b

a

b
a

b
a

Figure 3.5: Three state automaton from Lemma 3.1.

And determinize it as can be seen in Figure 3.6.
It is clear that every state in determinized automaton, except q∅, is reachable, and

every state can be distinct from all other states.

20

q0,1,2 q0,1

q0,2 q1,2

q0

q2

q1

q∅

a

b a

b

a

b

a,b

a

b

a

b

a

b

a, b

Figure 3.6: Minimal determinized three state automaton

Next we will show the stronger statement and so, that for every pair (n, m), n ∈ N

and m ∈ N, m ≤ 2n − 1, there exists a n-states kDFA such that equivalent minimal
DFA has exactly m states. However, in this case, the alphabet of linear size is required.

3.1 Linear alphabet

Firstly, let us explain the idea behind the construction of such automaton. We will
have two special letters ’a’ and ’b’, ’a’ for doubling resulting number of states and
b for adding one additional state. Now, let’s say we want 5-state kDFA with 29
resulting state complexity. We can get that from 4-state kDFA with 14 resulting state
complexity using the letter ’a’ for doubling, and letter ’b’ to add exactly one more.
And again the 4-state automaton can be obtained from 3-state kDFA with 7 resulting
state complexity using only the letter ’a’ for doubling state complexity. We can look
at it as a recursive function with input n - number of states of automaton and m -
desired number of states of current level. Or, as in most cases when using recursive
idea, we can reformulate this approach using ideas of dynamic programming where
the complex problem is broken down into simpler subproblems. Then the final result
is built from simple cases, from the bottom up. For better understanding see example
Figure 3.7. Here we simple start with the only state and gradually, in phases, build
our desired automaton adding letters a and b.

21

n = 1: 1

n = 2: 1 2 3

n = 3: 1 2 3 4 5 6 7

n = 4: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n = 5: 1 2 3 4 5 6 7 8 9 10 . . . 29 ...

a + b

a + b

a

a + b

Figure 3.7: Magic numbers with linear alphabet

In general the build-up can be visualized as follows: Where blue arrow indicate

n = 1: _

n = 2: _ _ _

n = 3: _ _ _ _ _ _ _

n = 4: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 3.8: General build-up of state complexity

using only letter a and red one using both a and b for doubling plus one.
From the Figure 3.8 can be seen that it is not always necessary to start with n = 1.

Let’s say we want 4-state kDFA with resulting state complexity 5. In this case we will
start with 2-state kDFA and build it up to 4-state.

Lemma 3.3 For every pair (n, m), n ∈ N and m ∈ N, m ≤ n, there exists a n-states

kDFA such that equivalent minimal DFA has exactly m states.

Proof.
We will construct a kDFA M = (Q, Σ, δ, I, F), where Q = {q0, . . . , qn−1}, Σ = {a},
I = F = {q0} and

22

δ(qi) =


qi+1 i < m − 1

q0 i = m − 1

qi i ≥ m

i ∈ N

Such structure then looks like the one in Figure 3.9.

q0 q1 · · · qm−1 qm · · · qn−1
a a a

a

a
a

a

Figure 3.9: Example automaton

It is clear that m states will be visited. To show that states qi and qj, for i > j,
are distinct, we can use word am−i which will transfer qi to qi+m−i = q0 which is final
and qj to qj+m−i ̸= q0 and that is non-final state.

Lemma 3.4 For every pair (n, m), n ∈ N and m ∈ N, n ≤ m ≤ 2n − 1, there exists
a n-states kDFA such that equivalent minimal DFA has exactly m states.

Proof.

q0 q1 q2 qnew

a

a a

a

b
b

b b

To better understand the process of build-up, let us present a default case scenario
on 2-state kDFAs with the first and second phase of adding new letters with additional
state. In Figure 3.10 there are two rows, as the first column indicates, first row includes
2-state kDFA with its minimal DFA that has exactly 2 states. The second row includes
2-state kDFA with its minimal DFA that has exactly 3 states.

23

Added letters kDFA Minimal DFA

Default case 2-2

q0 q1
a0

a0

q0,1 q1
a0

a0

Default case 2-3

q0 q1
a0, b0

a0

b0 q0,1 q1

q0

a0

a0

b0

b0
a0, b0

Figure 3.10: Default cases with 2-state kDFAs

First phase of build-up consists of adding new state and letters. We will take
default cases from Figure 3.10 and add new state to each of the kDFAs. The next
step is to correctly model new transitions. For every default case create a two new
automata, one with added letter a1 and the second one with added letters a1 and b1.
The final result can be seen in Figure 3.11

This process continues similarly until we reach desired level. For the simplicity we
will provide only the kDFA without their minimal determinstic equivalent in second
phase. The result can be seen in Figure 3.12

Lemma 3.5 For every pair (n, m), n ∈ N and m ∈ N, m ≤ 2n − 1, there exists a
n-states kDFA such that equivalent minimal DFA has exactly m states.

Proof.
Proof is a result of Lemmas 3.3 and 3.4

24

Added letters kDFA Minimal DFA

2-2 + a = 3-4

q0 q1 q2
a0

a0, a1
a1

a1

a0
q0,1,2 q1,2

q0,1 q1

a0

a0

a0

a0

a1 a1

a1

a1

2-2 + (a + b) = 3-5

q0 q1 q2
a0

a0, a1
a1

a1

b1

b1

a0, b1

q0,1,2 q1,2

q0,1 q1

q2
a0

a0

a0

a0

a1 a1

a1

a1

b1

b1

b1

b1

a0, b1

a1

q0,1 is equivalent to q0

2-3 + a = 3-6

q0 q1 q2
a0, b0

a0, a1

b0

a1

a1

a0, b0

q0,1,2 q1,2

q0,1 q1

q0,2

q0

a0

a1

b0

a0a1

b0

a0

b0, a1
a0, a1

b0

a0, b0

a1

a0, b0

a1

2-3 + (a + b) = 3-7

q0 q1 q2
a0, b0

a0, a1

b0

a1

a1

b1

b1

a0, b0, b1

q0,1,2 q1,2

q0,1 q1

q0,2

q0

q2
a0

a1

b0

a0a1

b0

a0

b0, a1
a0, a1

b0

a0, b0

a1

a0, b0

a1

b1

b1

b1

b1

b1

b1

a0, b0, b1

a1

Figure 3.11: First phase of build-up

25

Base kDFA with + a kDFA with + (a + b)

3-4

q0 q1 q2 q3
a0

a1, a2
a0, a1, a2

a1

a0, a2

a2

a0, a1

q0 q1 q2 q3
a0

a1, a2

b2

a0, a1, a2

b2

a1

a0, a2

b2

a2

a0, a1, b2

3-5

q0 q1 q2 q3
a0

a0, a1, a2
a1, a2

a1

b1

b1

a0, b1, a2

a2

a0, a1, b1

q0 q1 q2 q3
a0

a0, a1, a2
a1, a2

a1

b1

b1

a0, b1, a2

a2

a0, a1, b1, b2

b2

b2

b2

3-6

q0 q1 q2 q3
a0, b0

a0, a1, a2

b0

a1, a2

a1

a0, b0, a2

a2

a0, b0a1, b1

q0 q1 q2 q3
a0, b0

a0, a1, a2

b0

a1, a2

a1

a0, b0, a2

a2

a0, b0, a1, b1, b2

b2

b2

b2

3-7

q0 q1 q2 q3
a0, b0

a0, a1, a2

b0

a1, a2

a1

b1

b1

a0, b0, b1, a2

a2

a0, b0, a1, b1

q0 q1 q2 q3
a0, b0

a0, a1, a2

b0

a1, a2

a1

b1

b1

a0, b0, b1, a2

a2

a0, b0, a1, b1, b2

b2

b2

b2

Figure 3.12: Second phase of build-up

26

3.2 Unary alphabet

In this section, we will explore what is the achievable range of state complexities in
unary kDFAs. Usually, unary automata are special case when it comes to various
problems. Same will hold in our case.

Lemma 3.6 For pair (n, m) ∈ N2 there exists an unary n-state kDFA such that
equivalent minimal DFA has exactly m states if and only if m ≤ n.

So this Lemma 3.6 says that only rage from 1 to n of state complexity is reachable
for unary kDFAs.

Proof.
We will use the fact that every unary automaton can be replaced by equivalent au-
tomaton consisting of tail and loop.

q0 . . . qk qk+1 . . . qr

Final states can be assigned randomly. Assume there are f final states. And as it
is kDFA, by definition, every state can be also initial.

New, we will create a equivalent DFA. This DFA will have only one initial state, it
will be q0. For every initial state in kDFA add all f final states to this newly created
DFA, in a way that, if qi is the initial state and qj is currently added final state, assign
qj−i as final. Therefore if some string ap ended in final states, thus is accepting in

kDFA, it will be accepting in DFA since from q0 will end in final state.
As this construction is deterministic, it is clear that more than n states cannot be

reached. Besides, it is not guaranteed that this automaton is minimal, so the final
state complexity could potentially be even lower.

27

Example 3.7 Let’s start with this kDFA

q0 q1 q2 q3 q4

Now we have 2 initial states: q1 and q3. Firstly, for q1 states q0 and q3 we be final
in constructed DFA. For the latter initial state states q1 and q4 will be final.

So the resulting automaton will look like this:

q0 q1 q2 q3 q4

In this case we can see that the q0 was not reachable in kDFA, so it does not play
a role in the construction of the equivanelt DFA.

28

Chapter 4

Average state complexity and other

results

4.1 Average state complexity

In our previous work, we have already ventured in to the area of average state com-
plexity. There we proved exact formula for upper bound for average state complexity
as well as more convenient form. This useful form was however proven only for odd
n ≥ 5 in Theorem:

Theorem 4.1 Let n ≥ 5 be odd number, then average state complexity of a language
represented by an n-state kDFA is at most 5/8 × 2n.

In this work, we devoted a significant amount of time to proving the other coun-
terpart, ensuring it holds for even n. But this turned up to be rather a difficult task.
Then came the idea to start from the beginning and not divide the work into even and
odd n. This was not easy as well, but we were able to formulate a stronger statement
and also prove it.

Theorem 4.2 Let n ∈ N, n ≥ 1, then average state complexity of a language repre-
sented by an n-state family is at most 5/8 × 2n.

Proof.
Basically, what we want to show is that:

n∑
i=1

i∑
j=1

(
n
i

)(
n
j

)
2n − 1 ≤ 5

82n.

29

holds for every n ∈ N.
Firstly, let’s observe that the sum in the nominator is:

S =
n∑

i=1

i∑
j=1

(
n

i

)(
n

j

)
=

∑
1≤j≤i≤n

(
n

i

)(
n

j

)
=

∑
1≤i≤j≤n

(
n

i

)(
n

j

)

Now, the idea is to combine the last two forms so that every summand correspond-
ing to j ≤ i or i ≤ j appears once. This way we can free these indexes from each
other. We just need to exclude those where i = j as these are counted twice.

2S =
∑

1≤i≤j≤n

(
n

i

)(
n

j

)
+

∑
1≤j≤i≤n

(
n

i

)(
n

j

)
=

=
∑

1≤i≤j≤n

(
n

i

)(
n

j

)
+

∑
1≤j<i≤n

(
n

i

)(
n

j

)
+

∑
1≤i=j≤n

(
n

i

)(
n

j

)
=

=
∑

1≤i,j≤n

(
n

i

)(
n

j

)
+

n∑
i=1

(
n

i

)2

=

= (2n − 1)2 +
(

2n

n

)
− 1.

Hence

S =
(2n − 1)2 +

(
2n
n

)
− 1

2 .

From this we can substitute S to inequality to obtain:

(2n − 1)2 +
(

2n
n

)
− 1

2(2n − 1) ≤ 5
82n

22n − 2 · 2n + 1 +
(

2n

n

)
− 1 ≤ 5

42n(2n − 1)
(

2n

n

)
≤ 4n

4 + 3 · 2n

4 .

Using Stirling approximation can be shown that
(

2n
n

)
≤ 4n

√
πn

which is less than or
equal to 4n

4 + 3·2n

4 , for n ≥ 1. This proves this theorem.

4.2 Different approach to average state complexity

As mentioned in the end of our previous work and also can be seen in Table 4.1. there
is a quite big gap between calculated average state complexity and the real one. That
is why other, possibly better, approaches are examined.

30

n
Actual average

state complexity

Average state
complexity obtained

by Equation ??

2n

2 1.39 2.34 4
3 2.25 4.86 8
4 3.81 9.80 16
5 6.37 19.55 32
6 10.24 38.83 64
7 15.81 77.01 128

Table 4.1: Comparison of average state complexities

One of the viable approaches is to analyze the resulting state complexity of indi-
vidual automata as was already presented in Figure 2.2. There we can see that there
are many automata with state complexity 1, and also quite a lot with state complex-
ity of less than or equal to n which is 6 and than the rest. Here the idea is to count
automata for these 3 categories and that computes the average state complexity from
the obtained numbers. To this day, we have only experimented with 2 categories: 1
and the rest, which did not provide better results than the already known results.

Another not really examined approach could be to look at the rate the state
complexity grows between individual values of n. Then if we know that the average
state complexity, consider the value computed from generation, and we also know
that the state complexity from n-state kDFAs to (n + 1)-state kDFAs grows let’s say
twice, then we can say that the average state complexity for the (n + 1)-state kDFAs
is two times the calculated value. By induction, we can calculate the average state
complexity for every n.

31

Bibliography

[1] M. Holzer, K. Salomaa, and S. Yu. On the state complexity of k-entry deterministic
finite automata. Journal of Automata, Languages and Combinatorics, 6:453–466,
2001.

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation 2. edn. 2. Addison-Wesley, 2003.

32

