
P. J. Safarik University

Faculty of Science

PARTIALLY NONDETERMINISTIC
AUTOMATA -

NONDETERMINISTIC CHOICE OF
INITIAL STATES

BACHELOR’S THESIS

Field of Study: Informatics
Institute: Institute of Computer Science
Tutor: RNDr. Juraj Šebej, PhD.

Košice 2023
Šimon Huraj

Introduction

Even though automata theory is well-researched, there are still many unanswered
questions. As many previous papers have stated state complexity is a natural com-
plexity measure for any kind of automaton, therefore we decided to provide additional
insights into this topic.

In this study we consider specific class of automata, that have an inner structure
deterministic but the choice of initial states is nondeterministic, meaning that any
state can serve as an initial. This type of automaton was already studied in [1] where
they call it k-entry DFA. In their work, they proved, among other things, the upper
bound for state complexity. This thesis focuses more on the average state complexity
and also the resulting state complexity based on the choice of the initial states.

We also study groups of automata that are similar in structure but differ in their
set of initial states.

Chapter 1

Definitions and Notation

It is assumed that the reader has a basic understanding of automata theory as outlined
in Hopcroft and Ullman’s work [2].

Definition 1.1 Let k ≥ 1. A k—entry deterministic finite automaton (kDFA) is a
quintuple M = (Q, Σ, σ, I, F), where Q is a finite set of states, Σ a finite set of input
symbols, σ : Q × Σ → Q is the transition function, I ⊆ Q is the set of initial states
with |I| = k, and F ⊆ Q the set of final states [1].

Definition 1.2 Let k ≥ 1. Family of finite automata will represent a group of kDFAs
where all the automata in the particular group have equivalent:

• set of states Q,

• set of input symbols Σ,

• transition function σ,

• set of final states F ,

they only differ in the set of initial states I

3

Chapter 2

Java Application

Since working with many automata, sometimes even millions, by hand would be
impossible, we decided to create a simple application that will handle this issue for
us and will help us analyze whole groups of automata at once. This application is
capable of generating automata, either one specific or range of more, as well as a few
basic operations with them.

2.1 Automaton Representation

Although people prefer the graphical interpretation of automaton for a better under-
standing of its structure, it is more suitable for computers to work with numbers.
That is the first reason why we opted for this representation. The second is that it is
easier for us to generate a successor for chosen automaton simply by adding 1 to the
already generated number.

To transform automaton to number representation, firstly we need to rename states
from 0 to n − 1 if they are not already. Then the process is relatively straightforward.
Let |Q| = n and |Σ| = k. Firstly, we will construct a number in the base-n numeral
system having k.n cyphers. Let i ∈ {0, ..., n} and j ∈ {0, ..., k}, then (i+j)-th cipher
represents destination state for qi reading j-th letter of alphabet. Converted to base-
10 we will call it Transitions number. Secondly, create FinalStates number, which
is a binary number with n cyphers, the value of i-th one depends on whether qi is
final or not. Next, construct InitialStates number, similar to FinalStates number, it
is a binary number with n cyphers. The value of i-th cypher depends on whether
qi is initial or not. Finally, convert FinalStates number and InitialStates number to
base-10 and add all the numbers together by the formula:

4

(Transitions ∗ 2n + FinalStates) ∗ 2n + InitialStates

Example 2.1 (Conversion) Let’s have a automaton M=(Q, Σ, σ, q0, F), Q={q0, q1, q2},
Σ={a,b}, F={q0} and transitions are as shown below

q0

q1

q2

a

b

a

b

a, b

Considering |Q| = n = 3 and |Σ| = k = 2, then Transitions = (122100)3, F inalStates =
(100)2 and InitialStates = (101)2. Converting numbers and putting it all together
we get

(468 ∗ 23 + 4) ∗ 23 + 5 = 29989

and that is a corresponding number to automaton M.

2.2 Generating Automata - Data set

We use our simple Java application to generate the entire range of numbers represent-
ing some unique automaton which initially had a set of states the size of our chosen
constant. Then the program converts the generated numbers to automata, performs
some basic algorithms on them and does an analysis of the results either for one sep-
arate automaton, one complete family or all the generated automata. The complete
process can be seen in the diagram below:

5

generate automaton number

convert to automaton

remove unreachable states

determinate automaton

minimize automaton

analyze

2.3 Results of an analysis

Our analysis mainly focuses on the state complexity of individual automata after
determining and minimising, the range of languages that one family can represent
and the range of state complexity one family can have. Although the process of
generating and analyzing is fairly simple, it is computationally heavy, therefore we
were able to acquire results only for automata that had initially set of states the size
less than or equal to 5.

Results for different set sizes are more or less equal, thus we will only provide plots
for only automata that initially had a set of states of size 3.

6

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
·104

Resulting state complexity

A
ut

om
at

a
C

ou
nt

State complexity for individual automata

1 2 3 4 5 6 7 8
0

200

400

600

800

1,000

1,200

Range of unique languages

Fa
m

ili
es

C
ou

nt

Range of languages for individual families

7

Chapter 3

Average State Complexity

In this paper, we went a step further than Holzer, Salomaa and Yu in [1], where they
only provided an upper bound for state complexity of kDFA, and tried to come up
with a way to determine average state complexity for this type of automata. We have
used their upper bound to derive an equation for average state complexity.

3.1 Equation
∑n

i=1

((
n
i

)
·∑i

j=1

(
n
j

))
∑n

i=1

(
n
i

) =
∑1

j=1

(
n
1

)(
n
j

)
+∑2

j=1

(
n
2

)(
n
j

)
+ · · · +∑n

j=1

(
n
n

)(
n
j

)
∑n

i=1

(
n
i

) =

=

(
n
1

)
·∑1

j=1

(
n
j

)
+
(

n
2

)
·∑2

j=1

(
n
j

)
+ · · · +

(
n
n

)
·∑n

j=1

(
n
j

)
∑n

i=1

(
n
i

)
(3.1)

now we have to distinguish between two cases when n is odd or even. Let us first
discuss a first case when n is odd:

=

(
n
1

)
·
(∑1

j=1

(
n
j

)
+∑n−1

j=1

(
n
j

))
+ · · · +

(
n

n−1
2

)
·
(∑n−1

2
j=1

(
n
j

)
+∑n+1

2
j=1

(
n
j

))
∑n

i=1

(
n
i

) + 1 =

=
∑n−1

2
j=1

((
n
j

) (
2n − 2 +

(
n
j

)))
2n − 1 + 1 =

(2n − 2) ·∑n−1
2

j=1

(
n
j

)
+∑n−1

2
j=1

(
n
j

)2

2n − 1 + 1 =

=
(2n − 2) · (2n−1 − 1) + (2n

n)
2 − 1

2n − 1 + 1 =
(2n − 2)2 +

(
2n
n

)
− 2

2 · (2n − 1) + 1,

(3.2)

we obtain this result using operations with binomial coefficients and by equations:
n−1

2∑
i=1

(
n

i

)
= 2n

2 − 1 = 2n−1 − 1,

n−1
2∑

i=1

(
n

i

)2

=

(
2n
n

)
2 − 1

8

which are valid when n is odd, which is our case.
The second case when n is even:

=

(
n
1

) (∑1
j=1

(
n
j

)
+∑n−1

j=1

(
n
j

))
+ · · · +

(
n

n
2 −1

)(∑n−1
2

j=1

(
n
j

)
+∑n+1

2
j=1

(
n
j

))
+
(

n
n
2

)∑n
2
j=1

(
n
j

)
∑n

i=1

(
n
i

) + 1 =

=
∑n

2 −1
j=1

((
n
j

) (
2n − 2 +

(
n
j

)))
+
(

n
2

)
·∑n

2
j=1

(
n
j

)
2n − 1 + 1 =

=
(2n − 2) ·∑n

2 −1
j=1

(
n
j

)
+∑n

2 −1
j=1

(
n
j

)2
+
(

n
2

)
·∑n

2
j=1

(
n
j

)
2n − 1 + 1 =

=

(
2n − 2 +

(
n
n
2

))
·∑n

2 −1
j=1

(
n
j

)
+∑n

2 −1
j=1

(
n
j

)2
+
(

n
n
2

)2

2n − 1 + 1 =

=

(
2n − 2 +

(
n
n
2

))
·
(

2n−1 −
(

n−1
n
2

)
− 1

)
+ (2n

n)
2 − 2

(
n−1

n
2

)2
− 1 +

(
n
n
2

)2

2n − 1 + 1,

(3.3)
again we used operations with binomial coefficients and equations:

n
2 −1∑
i=1

(
n

i

)
= 2n

2 − 1 −
(

n − 1
n
2

)
= 2n−1 −

(
n − 1

n
2

)
− 1

n
2 −1∑
i=1

(
n

i

)2

=

(
2n
n

)
−
(

2
(

n−1
n
2

))2

2 − 1 =

(
2n
n

)
2 − 2

(
n − 1

n
2

)2

− 1,

which are valid when n is even and that is the case.
Using Equation 3.2 and Equation 3.3 we gain an equation for calculating average

worst-case state complexity which does not depend on parity of n.
After further investigation and approximation, we came to the conclusion that this

approach for calculating an average state complexity is unsatisfactory because we are
getting the worst possible scenario which is 2n − 1.

9

Conclusion

In this paper, we have laid down definitions needed for further understanding of a
problem we examine. We have introduced our application for working with automata
in a big scope and explained automaton representation with an algorithm for convert-
ing between number and quintuple (Q, Σ, σ, I, F)

We have also presented some results that we obtained through our application and
which will be analyzed more thoroughly in future work.

We have also done some research on average state complexity that was mentioned
in the Introduction, but this paper does not contain any more details, because they
yet have to be formalized.

10

Bibliography

[1] Holzer, M., Salomaa, K. and Yu, S., 2001. On the State Complexity of k-
Entry Deterministic Finite Automata. In: Journal of Automata, Languages and
Combinatorics. Vol. 6, no. 4, p. 453–466.

[2] Hopcroft, J. E., Motwani, R., Ullman, J. D., Introduction to automata
theory, languages, and computation - international edition (2. ed). Addison-Wesley,
2003. ISBN 978-0201441246.

11

