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Chapter 1

Generation of families and

automata

In this thesis, we build upon our previous work on this subject. We had some initial
generation results available for study. As generating more and more automata, espe-
cially with a higher number of states, becomes increasingly computationally intensive,
we opted to explore the realm of parallel computing.

1.1 Parallel generation

The problem of generating families and their subsequent processing is in fact excellent
candidate for leveraging all the benefits of parallel computing. If the work is cleverly
divided between multiple processors we can safely bypass all the problems when it
comes to concurrent execution of a program. In our case, this is easily done. We know
in advance what range of families are we going to generate, therefore we can split this
range of numbers for families into disjoint sets, one for each available processor. Each
processor then handles all of his families, creating his own statistics. In the end, the
only thing left to do is to correctly merge all of the gathered statistics, which is rather
an easy problem as it is done sequentially in the main thread of the program.

1.2 Goals

In this thesis, we went in two directions of generating. The first one is in fact just a
continuation of previous work. We were able to generate all 6 state families. How-
ever, going any further was not possible even with the optimization in the form of
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parallelism.
The other way was supposed to help us gather data for automata accepting lan-

guages over an alphabet of bigger size than 2. The goal behind this was to help us
formulate a hypothesis about how the size of the alphabet influences state complexity
and furthermore, the average state complexity of the class of automata we study. In
this case, we managed to accumulate results for the alphabet of size 3 for families up
to 4 states and for the alphabet of size 4 for families up to 3 states. As one can see,
with the increasing size of the alphabet the maximum size of families we are able to
analyze decreases. From the encoding provided in [?] it should be obvious that with
increasing alphabet size the number of families to be analysed grows exponentially
and so does the time needed for processing.

1.3 Results

In this section, we will provide data gathered through generation. Firstly let’s look
at results for 6 states family with binary alphabet. We will show charts with all the
important results, for the precise values, please refer to the tables at the end of this
section.

Figure 1.1 shows state complexity for individual 6 state kDFAs. Every bar rep-
resents the number of automata with a certain state complexity. All the values for
state complexities up to 63 are non-zero.

Figure 1.2 below shows non-equivalent languages per family. One bar of the chart
represents a number of families that represent a certain number of non-equivalent
languages.

A number of distinct state complexities of 6 state families can be seen in Figure
1.3 below. Every bar of this chart represents a number of families that represent
automata with a particular number of distinct state complexities. 30 is the highest
number of distinct state complexities that any 6-state family have.

1.4 Bigger alphabets

In Section 1.3 all the results as well as all the results in previous work were all based
on the alphabet of size 2. Sometimes using a bigger alphabet can help to identify
some key features of the model, therefore we have decided to examine it. Obviously,
increasing the size of the alphabet by any letters leads to an exponential increase in
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Figure 1.1: Six state kDFAs - state complexity
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Figure 1.2: Six state kDFAs - number of families with number of non-equivalent
languages

the number of families needed to analyze. Taking into account all the optimization
performed on the program for generation, we still couldn’t go much further with the
number of states.

Here we will provide the results we were able to obtain for a number of states from
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Figure 1.3: Six state kDFAs - number of families with particular number of distinct
state complexities

State
complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 446 1 64 1 130
2 262 2 80 2 66
3 60 3 38 3 60
4 0 4 74 4 0

Table 1.1: Results for 2 state automata with alphabet of size 3

2 to 4. For 2 and 3 state automata we have a result for the alphabet of size up to 4.
For 4-state automata only the results for the alphabet of size 3 were possible.

Table 1.1 shows results for 2 states automata with the alphabet size 3. Every row
consists of 3 results. Let’s take the second row. The left part states that there are
262 kDFAs that have state complexity 2. The middle part states that there are 80
families that have 2 non-equivalent languages. The right side states that there are 66
families that have automata that have only 2 distinct values for state complexity.

Table 1.2 is similar to Table 1.1, the only difference is that it shows results for 2
state automata with alphabet size 4.

Next Tables 1.3, 1.4 and 1.5 show similar data for gradually 3 state automata
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State
complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 1662 1 256 1 514
2 1090 2 288 2 190
3 320 3 130 3 320
4 0 4 350 4 0

Table 1.2: Results for 2 state automata with alphabet of size 3

State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 361659 1 19683 1 39750
2 117801 2 25242 2 20172
3 320856 3 9081 3 28278
4 45216 4 17214 4 62604
5 72504 5 9264 5 6660
6 154800 6 6414 6 0
7 29412 7 26388 7 0
8 0 8 44178 8 0

Table 1.3: Results for 3 state automata with alphabet of size 3

with an alphabet of size 3, 3 state automata with an alphabet of size 4 and 4 state
automata with an alphabet of size 3.

These results conclude our experiments with generation since increasing the num-
ber of states of the size of alphabet even further is so computationally heavy, that it
requires a lot more time or computational power. However, neither of them we have.

1.5 Interesting observations

By studying generated data we came across some interesting observations. As much
as we would like to prove them, due to time and capacity limitations, they only remain
hypotheses for now.

The first observation concerns about families. From the generation results, we
can connect data for a number of languages per family and the state complexity of
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State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 8348727 1 531441 1 1064418
2 1730337 2 595524 2 254316
3 9288396 3 117549 3 618618
4 812496 4 257058 4 2129952
5 1909176 5 147552 5 184224
6 6325668 6 111738 6 0
7 1345896 7 674172 7 0
8 0 8 1816494 8 0

Table 1.4: Results for 3 state automata with alphabet of size 4

State
Complexity

Number
of

Automata

Number of
Non-equivalent

Languages

Number of
Families

Number of
Distinct Number

of States

Number of
Families

1 740012880 1 16777216 1 33736472
2 138149580 2 22100480 2 14560760
3 300521124 3 6865060 3 16167816
4 757745784 4 7684692 4 43059648
5 139083768 5 5360892 5 74322192
6 225484128 6 5250012 6 62873352
7 223478640 7 9650808 7 14852736
8 245708784 8 14651088 8 7555104
9 404812368 9 6059496 9 1224144
10 462502368 10 6186816 10 78768
11 116237232 11 13782672 11 4464
12 83761488 12 17947248 12 0
13 69439392 13 16477848 13 0
14 103533696 14 34881840 14 0
15 16060608 15 17440704 15 0
16 0 16 67318584 16 0

Table 1.5: Results for 4 state automata with alphabet of size 3
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these languages. What is interesting is that there are many families that have many
distinct languages but these languages have small state complexities. This observation
goes back to our original motivation with logical circuits. When we look at the kDFA
as equivalent to the logical circuit, we can see that this circuit without connected
input pins can represent many simple logical functions. Simple in a way that the
same function can be calculated by a circuit with few logical gates, which in our case
represent states of automaton.

The second one is about automata themselves and their state complexity. When
dealing with average state complexity, we have thought about what operation does
more. Does determinization increase the number of states more, or on the other
hand, does the minimization decrease the number of states more? Because then
the state complexity of n-state automaton is decided on whether determinization of
minimization "wins". We looked at the latter of the two operations more closely. The
result was that the minimization reduces the number of states by a constant factor
somewhere right below 1,5. Meaning that if we have m states after determinization,
after minimization we will have m

1,5 .
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Chapter 2

Magic Numbers

In this chapter, we will deal with so-called magic numbers. Let’s say we have 3 state

kDFA. We will construct a minimal deterministic DFA and observe how many states
it has. Clearly, it must be a number from the range 1 to 2n − 1 Now the question
stands: Is there a number of states that can’t be obtained from some kDFA? If there
is, the number is then called a magic number. The magic number doesn’t have to be
the only one, there can be multiple values that can’t be obtained.

In our case, for this class of automata, the hypothesis is that there are no magic
numbers. In other words, for every pair (n, m), n ∈ N and m ∈ N, m ≤ 2n − 1, there
exists a n-states kDFA such that equivalent minimal DFA has exactly m states.

Firstly we will show that the upper bound for m is reachable.

Lemma 2.1 For every n ∈ N there exists a n-state kDFA such that equivalent min-
imal DFA has exactly 2n − 1 states.

Proof.
We will construct a kDFA:

q0 q1 q2 · · · qn−2 qn−1

b

a

b
a

b

a a

b

a

b

a

Determinize this automaton while using complete subset construction to get DFA M

with 2n states, including a state that represents an empty subset of states. We will
exclude this one as it can’t be reached from the initial state because of the deter-
ministic structure. This new automaton will have one initial state {q0, q1, · · · , qn−1}.
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Now we need to show that all 2n − 1 states are reachable from the initial state and
distinct.

Firstly, let us show that all 2n −1 states are distinct. Let F ′ be a set of final states
in M . Take S and T , distinct subsets of Q. Without loss of generality S ̸⊆ T , if not
we swap S and T . Next, take s = 0, · · · , n − 1, qs ∈ S, qs ̸∈ T and word an−s. Then
qs

an−s

−−−→ q0, that means S ∈ F ′. As s is not in T and no other state transitions to
q0 with this word, T ̸∈ F ′. As a result for every state qi, i = 0, · · · , n − 1 an−i is a
distinction word.

Let us show the reachability now. For this, we will use two features of how is the
automaton constructed, contraction and rotation. Mark state as i-big when it is a
subset of size i. Our initial state is n-big. Using contraction, q1

b−→ q0, we will reach
(n − 1)-big state. Here using rotation, we can visit all other (n − 1)-big states. In
every (n−1)-big state we can use contraction as well to get to (n−2)-big state. Again
use rotation, and so on. Alternating contraction and rotation we will visit all 2n − 1
states.

Example 2.2 (Upper bound for state complexity) Let us take 3-state automa-
ton from previous Lemma.

q0 q1 q2

b

a

b
a

b
a

Figure 2.4: Three state automaton from Lemma 2.1.

And determinize it
It can be seen that that every state in determinized automaton is reachable, and

every state can be distinct from all other states.
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q0,2 q1,2

q0

q2

q1

{}

a

b a

b

a

b

a,b

a

b

a

b

a

b

a, b

Figure 2.5: Three state automaton determinized
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Now we will show the stronger statement. However, in this case, the alphabet of
exponential size is required.

Lemma 2.3 For every pair (n, m), n ∈ N and m ∈ N, m ≤ 2n − 1, there exists a
n-states kDFA such that equivalent minimal DFA has exactly m states.

2.1 Linear alphabet

The first approach that we tried to prove this Lemma included a linearly big alphabet
considering the number of states n. The approach is quite simple, take some small n, in
our case n = 3, and find an automata that will determinize and minimize to gradually
1, 2, ..., 2n − 1 state DFA. Next, find a special letter or letters that will help build the
whole range for every n. Let us consider a n-state kDFA M that after determinization
and minimization will have m states. Now, add a state with these special letters to
M to obtain a n + 1-state kDFA D. One set of letters should be defined in a way
that D after minimization and determinization will have 2m states. The second set of
letters should get us a 2m + 1 state automaton. For better understanding see Figure
2.6. There is depicted a case where we start with a 3-state kDFA that has 2 states
after determinization and minimization. Then the first set of special letters with one
extra state is used to form a 4-state kDFA that has 4 stats after determinization and
minimization. The second set of letters is used to get 5 state DFA. We can continue
this way to build automata as if we filled in a table for n and m.

n = 3: 1 2 3 4 5 6 7

n = 4: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n = 5: 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 ...

Figure 2.6: Magic numbers with linear alphabet

This approach seems really straightforward. The only hard thing about it is to
find the special letters. In our case, this turned out to be very difficult. That is why
we opted for another solution. In this case, however, a larger alphabet is needed, and
that is of the exponential size. So the proof is not optimal. On the other hand, we do
not provide a statement that it is not possible to do better.
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2.2 Exponential alphabet

The second approach is based on simply creating a special automaton for every pair
(n, m). We always start with n states but with the empty alphabet and every state
is initial. And now we can start adding letters, two for every additional state that
we want to obtain after determinization and minimization. As one can see m is from
range 1, · · · , 2n −1 to at the worst case we would need 2n letters in our alphabet. The
meaning of the 2 letters is as follows. One letter is required to ensure reachability
from the initial state to the state representing some subset of all states. The second
one is used for the distinction between already reached states. The only tricky thing
in this approach is that we need to add those letters in a specific order. Firstly we
need to add letters that will ensure the reachability of single-element subsets. Then,
double element subsets and so on.

Proof.
Show how to get from n state kDFA to DFA with m states simply by adding letters
to alphabet, one for reachability and one for distinguishability. ...
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Chapter 3

Average state complexity and other

results

3.1 Average state complexity

In our previous work, we have already ventured in to the area of average state com-
plexity. There we proved exact formula for upper bound for average state complexity
as well as more convenient form. This useful form was however proven only for odd
n ≥ 5 in Theorem:

Theorem 3.1 Let n ≥ 5 be odd number, then average state complexity of a language
represented by an n-state kDFA is at most 5/8 × 2n.

In this work, we devoted a significant amount of time to proving the other coun-
terpart, ensuring it holds for even n. But this turned up to be rather a difficult task.
Then came the idea to start from the beginning and not divide the work into even and
odd n. This was not easy as well, but we were able to formulate a stronger statement
and also prove it.

Theorem 3.2 Let n ∈ N, n ≥ 1, then average state complexity of a language repre-
sented by an n-state family is at most 5/8 × 2n.

Proof.
Basically, what we want to show is that:

n∑
i=1

i∑
j=1

(
n
i

)(
n
j

)
2n − 1 ≤ 5

82n.
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holds for every n ∈ N.
Firstly, let’s observe that the sum in the nominator is:

S =
n∑

i=1

i∑
j=1

(
n

i

)(
n

j

)
=

∑
1≤j≤i≤n

(
n

i

)(
n

j

)
=

∑
1≤i≤j≤n

(
n

i

)(
n

j

)

Now, the idea is to combine the last two forms so that every summand correspond-
ing to j ≤ i or i ≤ j appears once. This way we can free these indexes from each
other. We just need to exclude those where i = j as these are counted twice.

2S =
∑

1≤i≤j≤n

(
n

i

)(
n

j

)
+

∑
1≤j≤i≤n

(
n

i

)(
n

j

)
=

=
∑

1≤i≤j≤n

(
n

i

)(
n

j

)
+

∑
1≤j<i≤n

(
n

i

)(
n

j

)
+

∑
1≤i=j≤n

(
n

i

)(
n

j

)
=

=
∑

1≤i,j≤n

(
n

i

)(
n

j

)
+

n∑
i=1

(
n

i

)2

=

= (2n − 1)2 +
(

2n

n

)
− 1.

Hence

S =
(2n − 1)2 +

(
2n
n

)
− 1

2 .

From this we can substitute S to inequality to obtain:

(2n − 1)2 +
(

2n
n

)
− 1

2(2n − 1) ≤ 5
82n

22n − 2 · 2n + 1 +
(

2n

n

)
− 1 ≤ 5

42n(2n − 1)
(

2n

n

)
≤ 4n

4 + 3 · 2n

4 .

Using Stirling approximation can be shown that
(

2n
n

)
≤ 4n

√
πn

which is less than or
equal to 4n

4 + 3·2n

4 , for n ≥ 1. This proves this theorem.

3.2 Different approach to average state complexity

As mentioned in the end of our previous work and also can be seen in Table 3.1. there
is a quite big gap between calculated average state complexity and the real one. That
is why other, possibly better, approaches are examined.
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n
Actual average

state complexity

Average state
complexity obtained

by Equation ??

2n

2 1.39 2.34 4
3 2.25 4.86 8
4 3.81 9.80 16
5 6.37 19.55 32
6 10.24 38.83 64
7 15.81 77.01 128

Table 3.1: Comparison of average state complexities

One of the viable approaches is to analyze the resulting state complexity of indi-
vidual automata as was already presented in Figure 1.1. There we can see that there
are many automata with state complexity 1, and also quite a lot with state complex-
ity of less than or equal to n which is 6 and than the rest. Here the idea is to count
automata for these 3 categories and that computes the average state complexity from
the obtained numbers. To this day, we have only experimented with 2 categories: 1
and the rest, which did not provide better results than the already known results.

Another not really examined approach could be to look at the rate the state
complexity grows between individual values of n. Then if we know that the average
state complexity, consider the value computed from generation, and we also know
that the state complexity from n-state kDFAs to (n + 1)-state kDFAs grows let’s say
twice, then we can say that the average state complexity for the (n + 1)-state kDFAs
is two times the calculated value. By induction, we can calculate the average state
complexity for every n.

20


