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Automata theory
Definition of deterministic finite automata (DFA):

q0start q1 q2 q3 q4 q5h e l l o

automata ⇐⇒ regular languages ⇐⇒ RegEx

"Real word" usage of finite automata:
• text processing (e.g. tokenization, morphological
analysis, part-of-speech tagging in NLP)

• network protocols (e.g. RFC 793 for TCP protocol)
• compilers (if | else | while | for | return)
• hardware design (e.g. network cards)
• DNA sequence analysis
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State complexity

State complexity

automata ⇐⇒ regular languages

State complexity characterizes the cost, in terms of states, of some basic
operations (union, intersection, concatenation, etc.) on regular languages.

Definition (State complexity of regular languages)
The deterministic state complexity of a regular language L, sc(L), is the
number of states in the minimal DFA for L.

Definition (Operational state complexity)
The deterministic state complexity of a k-ary operation□ over a subclass C of
DFAs is a function sc : Nk → N defined by

scC
□(n1, n2, ..., nk) = max(sc(□(L(A1), ..., L(Ak))) | Ai ∈ C having ni states,

i ∈ {1, ..., k})

3/37
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State complexity

State complexity - finding minimal automaton

1 construct an NFA for the language L(A)□L(B),
2 determinize the NFA to obtain a DFA,
3 minimize the DFA.

DFA A

operation□

DFA B

NFA A□B DFA A□B min DFA A□B
determinization minimization

4/37



Preliminaries Known results Implementation Theoretical results Bibliography

Motivation

Motivation

Why are we studying UNARY automata with HALF of the states
final?
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Motivation

Motivation

1 HALF OF THE STATES FINAL - equivalence between AFA and DFA with of
the states

Theorem (A.FELLAH; JÜRGENSEN; YU, 1990)

Language L is accepted by an n-state AFA if and only if LR is accepted by a
2n-state DFA with half of the states final.

2 UNARY AUTOMATA
— The state complexitymay be significantly smaller in the unary case

compared to that of at least a two-letter alphabet."
3 WHOLE SCALE OF EVEN NUMBER OF THE STATES

— some patterns may be observed by having any n-state automata, n ∈ N
even, not just powers of two

— operation implemented in the program works faster on smaller automata
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Basic concept

Unary deterministic finite automata
Considering complete unary DFAs with no unreachable states, the following
transition diagram represents any such an unary DFA, omitting the finality of
the states.

Nicaud’s notation: A = (n, k, F), where F is the set if final states

We slightly modify it to A = (nA, kA, fA)
• nA ∈ N is number of the states
• kA ∈ N, kA ≤ nA is length of the tail
• fA = bA0bA1 ...bAn−1 ∈ {0, 1}n

bAi =

{
1 if i ∈ F
0 if i ̸∈ F

7/37
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Basic concept

Minimal unary automata

Necessary and sufficient condition for unary DFA minimality (PIGHIZZINI;
SHALLIT, 2002)
An unary DFA A = (Q, {a}, δ, q0, F) of size (µ, λ) is minimal if and only if both
the following conditions are satisfied:

1 for any maximal proper divisor d of λ, there exists an integer
h ∈ {0, ..., λ} such that ph ∈ F if and only if p(h+d)(modλ) ̸∈ F

2 qµ−1 ∈ F if and only if pλ−1 ̸∈ F
Here Q = {q0, q1, ..., qµ−1, p0, p1, ..., pλ−1} and δ(qi, a) = qi+1 for
i ∈ {0, ..., qµ−2}, δ(qµ−1, a) = p0, δ(qj, a) = qj+1 for j ∈ {0, ..., qλ−2},
δ(pλ−1, a) = p0.

Conclusion: There is no need to use Hopcroft’s minimization process
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Basic concept

Minimal unary automata

Example Reduction process for A = (8, 4, 11001010)

0 1 2 3 4

5

6

7

Can be reduced to:

0 1 2 3 4 5

Can be reduced to:

0 1 2 3 4

Amin = (5, 3, 11001)
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Known results

Intersection and Union

State complexity of intersection/union over unary DFA (PIGHIZZINI; SHALLIT,
2002)
Let A be an unary DFA with the tail of length µA and the cycle of length λA
and B be an unary DFA with the tail of length µB and the cycle of length λB.
Then languages L(A) ∪ L(B) and L(A) ∩ L(B) are accepted by a DFA with the tail
of lengthmax(µA, µB) and the cycle of length (λA, λB)

sc∩(m, n) = sc∪(m, n) = max
λA∈{1,...,n},λB∈{1,...,m}

(max{n−λA,m−λB}+nsn(λA, λB))

L(A) ∪ L(B) = (L(A)C ∩ L(B)C)C

The last equality holds even for class of unary automata with half the states
final

10/37
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Known results

Intersection and Union

Example A = (4, 2,0110) and B = (4, 1,0101)

fA∩B = (01(10)3 bitwise AND 0(101)21)
fA∪B = (01(10)3 bitwise OR 0(101)21)

11/37
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Known results

Concatenation

State complexity of concatenation over unary DFA (PIGHIZZINI; SHALLIT,
2002)
NLet A be an unary DFA with the tail of length µA and the cycle of length λA
and B be an unary DFA with the tail of length µB and the cycle of length λB.
Then the language L(A) · L(B) is accepted by a DFA with the tail of length
µA + µB + (λA, λB) − 1 and the cycle of length (λA, λB).

a0A a1 a2 a3

b0B b1 b2

Input DFAs A and B

a0AB a1 a2 a3

b1 b2

Output NFA AB
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Program

Class unary_automaton initializes itself to (n, k, F), its objects are
inputs/output of the following functions
• reduct - outputs minimal DFA Amin

• intersection - outputs DFA A ∩ B
• union - outputs DFA A ∪ B
• concatenation - outputs DFA AB
• square - outputs DFA A2

• power - outputs DFA Ak for given k
• plus - outputs DFA A+

• star - outputs DFA A∗

• complement - outputs DFA AC

• minus - outputs DFA A − B

13/37
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Intersection results for m,n up to 10

2 4 6 8 10
2 3 7 11 15 19
4 7 13 21 29 37
6 11 21 31 43 46
8 15 29 43 57 73
10 19 37 46 73 91

Table: State complexity intersection over unary DFAs with half of the states final

Hypothesis: scC
∩(m, n) = scC1/2

∩ (m, n)

2 4 6 8 10
2 1 4 12 40 140
4 4 8 24 80 280
6 12 24 108 360 840
8 40 80 360 1280 4480
10 140 280 840 4480 17500

Table: Number of witnesses for the state complexity intersection over unary DFAs
with half of the states final
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Intersection results for m,n up to 10

Figure: State complexities distributions form = 8, n = 10

Remark: There are magic numbers
15/37
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Intersection results for m,n up to 10

Figure: State complexities distributions for m,n up to 10
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Intersection witnesses
m n A = (m, kA, fA) B = (n, kB, fB)
2 2 (2,0,10) (2,1,01)
2 4 (2,0,10) (4,1,1100)
2 6 (2,0,10) (6,1,111000)
2 8 (2,0,10) (8,1,11110000)
2 10 (2,0,10) (10,1,1111100000)
4 4 (4,0,1100) (4,1,1100)
4 6 (4,0,1100) (6,1,111000)
4 8 (4,0,1100) (8,1,11110000)
4 10 (4,0,1100) (10,1,1111100000)
6 6 (6,0,111000) (6,1,111000)
6 8 (6,0,111000) (8,1,11110000)
6 10 (6, 1 ,111000) (10,1,1111100000)
8 8 (8,0,11110000) (8,1,11110000)
8 10 (8,0,11110000) (10,1,1111100000)
10 10 (10,0,1111100000) (10,1,1111100000)
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Concatenation results for m,n up to 10

2 4 6 8 10
2 3 6 8 10 12
4 6 8 12 15 18
6 8 12 15 20 24
8 10 15 20 24 30
10 12 18 24 30 35

Table: State complexity of concatenation over unary DFAs with half of the states final

Hypothesis: scC1/2
◦ (m, n) =

{
mn
4 + m+n

2 + 1 = (m2 + 1)( n2 + 1) ifm ̸= n
n2
4 + n ifm = n

2 4 6 8 10
2 2 1 2 3 4
4 1 2 3 3 2
6 2 3 2 2 1
8 3 3 2 2 2
10 4 2 1 2 3
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Concatenation results for m,n up to 10

Figure: State complexities distributions form = 8, n = 10

Remark: There are NO magic numbers
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Concatenation results for m,n up to 10

Figure: State complexities distributions for m,n up to 10
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Concatenation witnesses

conditions examples of possible witnesses
m = 2 and n > 2 A = (2,0,01)
k odd, k ̸= n − 1 B = (n, k, (10) n2 )

AB = (2n − k + 1, 2n − k − 1, (01) n2 +11n−k−1)
ABmin = (n + 2, n + 1, (01) n2 +1)

n = m A = (m, m
2 − 1, 1 m

2 −1010 m
2 −1)

m, n > 4 B = (m, m
2 , 1 m

2 −10 m
2 1)

AB = (m
2

2 + 3m
2 , m2

4 +m − 1, 1
m2
4 + m

2 −201 m
2 −101 m

2 +1)
ABmin = (m

2

4 +m, m2

4 +m − 1, 1
m2
4 + m

2 −201 m
2 −101)

n = m A = (m, m
2 − 1, 1 m

2 0 m
2 )

m, n > 4 B = (m, m
2 − 2, 1 m

2 −2000110 m
2 −3)

AB = (m
2

4 + 5m
2 − 1, m2

4 + 2m − 2, 1
m2
4 −601 m

2 +101 m
2 +101

3m
2 )

ABmin = (m
2

4 +m, m2

4 +m − 1, 1
m2
4 −601 m

2 +101 m
2 +101)
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Concatenation witnesses

conditions examples of possible witnesses
n = m + 2 A = (m, m

2 − 1, 1 m
2 −1010 m

2 −1)
m, n > 2 B = (m + 2, m

2 , 1 m
2 010 m

2 )
AB = (m

2

4 + 5m
2 + 2, m2

4 + 2m + 1, 1m01
m2
4 + m

2 −101m+1)
ABmin = (m

2

4 + 3m
2 + 2, m2

4 + 3m
2 + 1, 1m01

m2
4 + m

2 −101)
n = m + 4 A = (m, m

2 − 1, 1 m
2 −1010 m

2 −1)
m, n > 2 B = (m + 4, m

2 + 2, 1 m
2 010 m

2 10)
AB = (m

2

4 + 5m
2 + 4, m2

4 + 2m + 3, 1m01 m
2 01

m2
4 + m

2 −101 m
2 +2)

ABmin = (m
2

4 + 2m + 3, m2

4 + 2m + 2, 1m01 m
2 01

m2
4 + m

2 −101)
n = m + 6 A = (m, m

2 − 1, 1 m
2 −1010 m

2 −1)
m, n > 2, 4|m B = (m + 6, m

2 + 3, 1 m
2 0110 m

2 100)
AB = (m

2

4 + 3m + 6, m2

4 + 5m
2 + 5, 1

m2
8 + 7m

4 +101 m
2 01

m2
8 + m

4 −101 m
2 +3)

ABmin = (m
2

4 + 5m
2 + 4, m2

4 + 5m
2 + 3, 1

m2
8 + 7m

4 +101 m
2 01

m2
8 + m

4 −101)
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Intersection

State complexity of intersection

Theorem 3.1 (Intersection - lower bound, special case)

Let A = (m,0, 1 m
2 0 m

2 ), B = (n, 1, 1 n
2 0 n

2 ) be unary deterministic finite automata
wherem, n ∈ N are even,m ≤ n, gcd(m, n − 1) = 1, n > 2. Then

sc(L(A) ∩ L(B)) = mn − m + 1

Sketch of proof
A ∩ B = (lcm(m, n − 1) +max(0, 1),max(0, 1), fA∩B) = (mn − m + 1, 1, fA∩B),
where fA∩B is the result of the bitwise AND operation on the following words

(1
m
2 0

m
2 )n−11

1(1
n
2 −10

n
2 )m

We prove that fA∩B won’t minimize with regard to the "condition for unary
DFA minimality". The second condition clearly holds and the proof for the
first condition is done by contradiction.

23/37



Preliminaries Known results Implementation Theoretical results Bibliography

Intersection

State complexity of intersection

Theorem 3.1 (Intersection - lower bound, special case)

Let A = (m,0, 1 m
2 0 m

2 ), B = (n, 1, 1 n
2 0 n

2 ) be unary deterministic finite automata
wherem, n ∈ N are even,m ≤ n, gcd(m, n − 1) = 1, n > 2. Then

sc(L(A) ∩ L(B)) = mn − m + 1

Sketch of proof
A ∩ B = (lcm(m, n − 1) +max(0, 1),max(0, 1), fA∩B) = (mn − m + 1, 1, fA∩B),
where fA∩B is the result of the bitwise AND operation on the following words

(1
m
2 0

m
2 )n−11

1(1
n
2 −10

n
2 )m

We prove that fA∩B won’t minimize with regard to the "condition for unary
DFA minimality". The second condition clearly holds and the proof for the
first condition is done by contradiction.

23/37



Preliminaries Known results Implementation Theoretical results Bibliography

Intersection

State complexity of intersection

Theorem 3.5 (Intersection/union - state complexity)
Let C be a class of all unary DFA and C1/2 be a class of all unary DFA with half
of the states final;m, n ∈ N even. Then

scC
∩(m, n) = scC1/2

∩ (m, n)

scC
∪(m, n) = scC1/2

∪ (m, n)

Sketch of proof Given kA ≥ kB, λA = m − kA, λB = n − kB,
Q(λA, λB) = max(m − λA, n − λB) + (λA, λB)maximized, the have witnesses

A = (m,m − λA, 1
m
2 −⌈ λA

2 ⌉0
m
2 1⌈

λA
2 ⌉), B =

{
(n, n − λB, 1

n
2 −10 n

2 1), if j < n
2 or j = n

(n, n − λB,0
n
2 −11 n

2 0), if n
2 ≤ j < n

j =


kB if kB = kA
n if kB ̸= kA and λB | (kA − kB)
kB + ((kA − kB) mod λB) if kB ̸= kA and λB ∤ (kA − kB)
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Intersection

State complexity of intersection
Krajňáková obtained the same results in her dissertation thesis
(KRAJNAKOVA, 2020) with a different witnessing pair. One of her witnesses
was not a minimal automaton; here, we present witnesses that are both
minimal automata.

Theorem 3.8 (Intersection/union - state complexity AFA)
Letm, n ∈ N. Considering the class of all unary alternating finite automata
we get

asc∩(m, n) = acs∪(m, n) = m + n + 1

Sketch of proof asc(L1 ∩ L2) ≤ m + n + 1 from (A.FELLAH; JÜRGENSEN; YU,
1990)

sc((L1 ∩ L2)R) = sc(L1 ∩ L2) = 2m2n − min(2m, 2n) + 1

asc(L1 ∩ L2) ≥ ⌈log2(2m2n − min(2m, 2n) + 1)⌉ = m + n

asc(L1 ∩ L2) ≥ m + n + 1 by contradiction: (A ∩ B)min for A = (2m,0, 12
m−1

02
m−1

)
and B = (2n, 1, 12

n−1
02n−1

) doesn’t have exactly half of the states final.
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Concatenation

State complexity of concatenation

IDEA: convert the task of concatenating languages into that of unioning
languages, where the languages used for union are concatenations of sim-
pler languages than the original

Let A = (nA, kA, fA), B = (nB, kB, fB) be unary DFAs. It holds that

L(A) = XA ∪ akAYA for XA = L(A) ∩ {ai | i = 0, ..., kA − 1}
YA = {ai | ai+kB ∈ L(A), i ∈ N0}

L(B) = XB ∪ akBYB for XB = L(B) ∩ {ai | i = 0, ..., kB − 1}
YB = {ai | ai+kA ∈ L(B), i ∈ N0}

Therefore using distributive law we get L(A) · L(B) = L0 ∪ L1 ∪ L2 ∪ L3, where
L0 = XAXB, L1 = akBXAYB, L2 = akAXBYA, L3 = akA+kBYAYB.

26/37
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Let A = (nA, kA, fA), B = (nB, kB, fB) be unary DFAs. It holds that

L(A) = XA ∪ akAYA for XA = L(A) ∩ {ai | i = 0, ..., kA − 1}
YA = {ai | ai+kB ∈ L(A), i ∈ N0}

L(B) = XB ∪ akBYB for XB = L(B) ∩ {ai | i = 0, ..., kB − 1}
YB = {ai | ai+kA ∈ L(B), i ∈ N0}

Therefore using distributive law we get L(A) · L(B) = L0 ∪ L1 ∪ L2 ∪ L3, where
L0 = XAXB, L1 = akBXAYB, L2 = akAXBYA, L3 = akA+kBYAYB.
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State complexity of concatenation

Theorem 3.10 (Concatenation - lower bound witnesses, the same length)

Let A = (n, n
2 − 1, 1 n

2 −1010 n
2 −1), B = (n, n

2 , 1 n
2 −10 n

2 1) be unary deterministic
finite automata where n ∈ N even, n ≥ 4. Then

sc(L(A) · L(B)) = n2

4
+ n

Sketch of proof

AL0 = (n − 2, n − 3, 1n−30)

AL1 =
(3n
2

− 1, n − 1,0n−11
n
2 −10

)
AL2 =

(
n + 1,

n
2

,0
n
2 1

n
2 −100

)
AL3 =

(n2
4

+ n,
n2

4
+ n − 1,0

3n
2 −1(1i0

n
2 −i)

n
2 −1
i=1 1

)
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Bitwise OR for the following expressions:

expr0 = 1n−30
n
2 (

n
2 +1)0

n2
4 +2

expr1 = 0n−1(1
n
2 −10)

n
2 +1(1

n
2 −10)

n
2 1

expr2 = 0
n
2 (1

n
2 −100)

n
2 (1

n
2 −100)

n
2 −11

n
2 −101

expr3 = 0
3n
2 −1(1i0

n
2 −i)

n
2 −1
i=1 1

n
2 (

n
2 +1)

After minimization we get

ABmin =
(
n2

4
+ n,

n2

4
+ n − 1, 1

n2
4 + n

2 −201
n
2 −101

)
.

Remark Form = n + 2,m = n + 4,m = n + 6 is the proof of the hypothesis
similar.
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Lemma 3.12
Let n ∈ N, n ≥ 4. Let C be a class of unary deterministic finite automata with
half of the states final such that
• both of their cycles contains only one final state,
• the greatest common divisor of lengths of their cycles is one.

Then scC
◦ (n, n) = n2

4 + n. Moreover the bound is met if and only if
A = (n, n

2 − 1, 1 n
2 −1010 n

2 −1) and B = (n, n
2 , 1 n

2 −10 n
2 1) or vice versa.
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Theorems 3.15, 3.16, 3.17
1 Let A = (n, n

2 − 1, 1 n
2 −1010 n

2 −1), B = (n + 2, n
2 , 1 n

2 010 n
2 ) be unary

deterministic finite automata where n ∈ N even, n ≥ 4. Then

sc(L(A) · L(B)) = n(n + 2)
4

+
n + (n + 2)

2
+ 1

2 Let A = (n, n
2 − 1, 1 n

2 −1010 n
2 −1), B = (n + 4, n

2 + 2, 1 n
2 010 n

2 10) be unary
deterministic finite automata where n ∈ N even, n ≥ 4. Then

sc(L(A) · L(B)) = n(n + 4)
4

+
n + (n + 4)

2
+ 1

3 Let A = (n, n
2 − 1, 1 n

2 −1010 n
2 −1), B = (n + 6, n

2 + 3, 1 n
2 0110 n

2 100) be unary
deterministic finite automata where n ∈ N even, n ≥ 4, 4 | n. Then

sc(L(A) · L(B)) = n(n + 6)
4

+
n + (n + 6)

2
+ 1
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Theorem 3.19 (Concatenationm = n, state complexity AFA)
Letm, n ∈ N andm = n. Considering the class of all unary alternating finite
automata we get

m + n ≤ asc◦(m, n) ≤ m + n + 1

Sketch of proof

sc((L1L2)R) = sc(L1L2) ≥ (2m−1 + 1)(2n−1 + 1)

asc(L1L2) ≥ ⌈log2((2m−1 + 1)(2n−1 + 1))⌉ = m + n − 1

asc(L1L2) ≥ m + n by contradiction: (AB)min for
A = (2m, 2m−1 − 1, 12

m−1−10102m−1−1) and B = (2n, 2n−1, 12
n−1−102n−1

1) doesn’t
have exactly half of the states final.
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State complexity of square

Theorem 3.20 (State complexity of the square)
Let L be arbitrary languages accepted by a n-state DFA with half of the states
final, n ∈ N even. Then

sc(L2) = 2n − 1

Sketch of proof Upper bound: 2n − 1
Witness: A = (n,0,0 n

2 1 n
2 )

A2 = (2n, n,0n1n−10).
A2
min = (2n − 1, n − 1,0n1n−1)

upper bound = lower bound
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Contribution
Recapitulation of my own contribution
• program implementation

— basic operation over unary DFAs
— statistics form, n up to 10
— hypothesis verification up to fixedm, n

• state complexity of intersection and union
— both lower bound and its tightness for DFA with half of the states final
— both lower bound and its tightness for DFA with any fixed number of final

states
— lower bound and its tighness for AFA

• state complexity of concatenation
— lower bounds form = n,m = n + 2,m = n + 4 andm = n + 6 if 4 | m
— tightness form = n if length of cycles are comprime and have one final

state
— lower bound for AFA ifm = n

• state complexity of square
— both lower bound and its tightness
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Future work

Problems left open
• intersection

— lower bound and tightness if one of the DFAs have exactly one final state
• concatenation

— lower bounds for whole scale ofm,n even (might be obtained by
generalizing found witnesses)

— tightness for the stated lower bounds
— state complexity over AFA for the whole scale
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Ďakujem za pozornosť!

Thank you for your attention!
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