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Abstract : The need for accurate and reliable indoor localization tool
grows and the concurrent solutions still have their shortcomings. Because
conventional cell phones currently include a camera, camera-based access
is simple, inexpensive, and portable. The article provides an overview of
the current state of indoor localization using images and explains the basic
approaches of computer vision and machine learning. In addition, it contains
a proposal for the solution of our diploma thesis and a summary of the
currently achieved results.
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1 Introduction

The problem of navigation has been on the field of science for many years.
At first, focus was on outdoor navigation around the cities and countries.
Nowadays the Global Navigation Satellite System (GNSS) has developed
into highly reliable tool for navigating people in outdoor scenarios, moreover
it is widely available and cheap. Nevertheless even the buildings can be
so spacious and sophisticated that we need to navigate around them. As
Mendoza-Silva, G. M. et al. [6] mentions, GNSS is not adequate for indoor
positioning because of the degradation of satellite signals indoors which are
the prerequisites for GNSS. Furthermore, indoor localization requires much
higher accuracy since two diferent rooms may be separated only by few
meters. Also indoor environments tend to be crowded and changed more
often than routes or buildings, which is another challenge to be faced. This
leads to a need of new techniques for indoor localization.
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2 Problem Analysis

The aim of our thesis is to improve the accuracy of indoor localization build-
ing on already proposed solutions since there is no need to build a program
from scratch, but there is a huge need to get more accurate. For example,
subject looking for a specific door or an object in the room requires cen-
timeter level accuracy. Beyond a robot performing operations cannot make
even a millimeter mistake.

There are numerous criteria for IPS (Indoor Positioning System) includ-
ing coverage, complexity, robustness, scalability, cost, privacy and power
consumption [6]. However our focus will be on accuracy.

There are ways to approach indoor localization taking advantage of different
types of input information about the environment one can obtain. The most
common technologies applied for IPS solutions are based on Light, Com-
puter Vision, Sound, Magnetic Fields, Dead Reckoning, Ultra-Wideband
(UWB), WiFi, Bluetooth Low Energy (BLE) and Radio Frequency Iden-
tification (RFID) and Near Field Communication (NFC). Further we target
on camera-based solutions.

2.1 IPS With Computer Vision

When searching for localization techniques, we can often come across Si-
multaneous Localization And Mapping (SLAM). The SLAM concept refers
to construction of a model of the environment (the map) and the estimation
of a robot’s pose (position and orientation) [2]. Accordingly SLAM may
be used even if a map of a building is not available. Although SLAM uses
cameras, it cannot be counted along with vision-based methods, because
cameras are used to provide a sensory input, not images.

One of the easiest solutions is based on markers (e.g. printed QR codes)
equally spread around the building that identify the places or rooms. One
can scan the marker and the application responds by estimating his position.

Another common approach takes advantage of a visual odometry (VO). VO
is the pose estimation process of an agent (e.g., vehicle, human, and robot)
that involves the use of only a stream of images acquired from a single or
from multiple cameras attached to it [1]. The term ”odometry” is translated
as a measurement of a journey. VO is mainly used for navigation, especially

2



for autonomous navigation, motion tracking, and obstacle detection and
avoidance.

3 Solution Proposal

When retrieving the information about surroundings from camera images
a reasonable solution would include computer vision techniques, which is
going to be our case. The main idea is to choose a suitable algorithm
for comparing images to be able to state where in the building the image
was taken. Formerly images will be released from surplus information and
preprocessed into the clearest way possible. Then for estimating the location
from input images we propose two approaches. The first one is going to be
a classic algorithmic solution using known computer vision algorithms and
the second one is going to take advantage of many input images and use a
machine learning approach.

3.1 Methods Of Preprocessing

Before applying any complex methods, many start with detecting some fea-
ture points - the subset of points from image sufficiently describing the
content. That is useful for computation complexity reduction since an algo-
rithm needs to check smaller amount of units.

Werner, M. et. al. [9] suggest image transformations that augment several
visual properties of image such as edges or corners. These can be useful for
indoor localization because the most desired objects for detection are doors,
windows and frontiers between wall and ground, all demarcating with strait
lines (edges) and corners.

3.2 Computer Vision Solution

Computer vision solution is based on comparing newly captured images (by
smartphone or smart glasses) with images from database that consists of
various viewpoints at areas around the building. The issue is which algo-
rithm to use to search for keypoint features and consequently how to state
the matching rules.

Keypoint features or interest points form a sparse set of corresponding lo-
cations in different images. They can be described by the appearance of
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patches of pixels surrounding the point location. Werner, M. et. al. [7] de-
scribes keypoint features detection in four stages: feature detection, feature
description, feature matching and feature tracking.

3.2.1 Keypoint Feature Detection And Description

In general it is easier to localize a patch with higher gradient (contrast
change), even easier it becomes when patch marks out with high gradients
in at least two considerably different orientations. This presumption can be
confirmed when using weighted summed square difference (equation 1) as a
matching criterion.

EAC(∆u) =
∑
i

w(xi)[I0(xi + ∆u)− I0(xi)]2 (1)

Equation 1: Weighted summed square difference, where:

I0 and I1 are the two images being compared

u = (u, v) is the displacement vector,

w(x) is a spatially varying weighting (or window) function

i is over all the pixels in the patch

When selecting patches that can be reliably matched, an auto-correlation
matrix A is useful (equation 2).

A = w ∗
[
I2x IxIy
IxIy I2y

]
(2)

Equation 2: Auto-correlation matrix A, where:

w is the weighting kernel

Ix and Iy are the two images being compared

The first method calculates eigenvalues of A and finds the best feature in
the smallest eigenvalue (Shi and Tomasi 1994). Harris and Stephens (1988)
propose estimating keypoints according to simpler quantity with α = 0.06
(equation 3).

det(A)− αtrace(A)2 = λ0λ1 − α(λ0 + λ1)
2 (3)

Equation 3: Keypoints quantity, where:
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λ0 and λ1 are the eigenvalues of matrix A

Werner, M. et. al. [7] introduce more techniques on detecting features, but
we will move on the next step which is feature description. This stage is
important prerequisite for matching (determining which features come from
which location in images). It is a good pattern to start with recording a
local scale, orientation or affine frame estimate and then resampling the
patch along them. Feature description follows with the use of one of the
following descriptors: multi-scale oriented patches (MOPS), scale invariant
feature transform (SIFT), principal component analysis SIFT (PCA-SIFT),
gradient location-orientation histogram (GLOH) or steerable filters.

3.2.2 Feature Matching

At this stage we will be matching corresponding feature points along two
images needed to be compared. When using Euclidean distance metric,
one option is to set a threshold (maximum distance) and return only pairs
of points not exceeding stated threshold. Performance of such a matching
algorithm can be evaluated by calculating true positive rate (TPR or recall),
false positive rate (FPR), positive predictive value (PPV or precision) or
accuracy (ACC) (equation 4).

TPR = TP/(TP + FN) = TP/P

FPR = FP/(FP + TN) = FP/N

PPV = TP/(TP + FP )

ACC = (TP + TN)/(P +N)

(4)

Equation 4: Performance of an algorithm, where:

P: positives, marked as a match

N: negatives, not marked as a match

TP: true positives, number of correct matches

FN: false negatives, number of matches that were not correctly de-
tected

FP: false positives, number of proposed matches that are incorrect

TN: true negatives, number of non-matches that were correctly re-
jected
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Ideally TPR is close to 1 and FPR is close to 0. By varying the threshold,
a group of such points collectively known as the receiver operating char-
acteristic (ROC curve) is obtained. The performance gets better with the
increasing area under the ROC curve. To improve the result we can match
the nearest neighbor in feature space and use threshold only to reduce the
number of FP. Or else compute the nearest and the second nearest neighbour
to the target descriptor and define nearest neighbor distance ratio (Mikola-
jczyk and Schmid 2005) as in equation 5.

NNDR =
d1
d2

=
‖DA −DB‖
‖DA −DC‖

(5)

Equation 5: Nearest neighbor distance ratio, where:

DA is the target descriptor, DB is the nearest and DC is the second
nearest neighbour to DA

d1 is the distance between DA and DB

d2 is the distance between DA and DC

Comparing all features of a target image to all other features would be
inefficient, therefore an indexing structure (multi-dimensional search tree or
hash table) can be used.

3.2.3 Feature Tracking

Feature tracking is an alternative to independently finding features in all can-
didate images and then matching them. Before searching for corresponding
images a set of likely feature locations is found. This approach is preferable
for video tracking applications where location needs to be stated faster and
does not usually change from frame to frame as there are only little differ-
ences between consequent images. One way to access this problem is to use
a hierarchical search strategy. The program seeks for features in low-quality
version of original images first and only then specifies its guess.

3.2.4 Edge Detection

Previously we sketched how key feature points can be found. Further the
focus will be on a specific type of feature points called edges. Edges carry
important information about the surroundings, for instance the boundaries
of objects, shadow boundaries or crease edges. Human can naturally identify
an edge as a location of a higher intensity change. Mathematically an edge
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is found at locations of high gradient (steep slopes). Magnitude of a gradient
indicates the slope of the variation, while its orientation points in a direction
perpendicular to the local contour.

J(x) = ∇I(x) =

(
∂I

∂x
,
∂I

∂y

)
(x). (6)

Equation 6: Definition of a gradient J in point (x, y) on image I.

3.3 Machine Learning Solution

Since designing object recognizers for all the different kinds of objects and
their variations is too complex problem, machine learning seems to be a
suitable technique. In the following section we resume some of the possibly
worthwhile approaches.

One of the first time a neural network was used for a computer vision
problem was LeCun’s Convolutional Neural Network (CNN) with back-
propagation algorithm called LeNet-5 experimented on handwritten digit
dataset. Since then various enhanced networks came to light, such as
AlexNet, fast region-based CNN, Xception pictured in more detail in survey
of deep learning by Zahangir, A. et. al [10]. In general we are looking for
models for detection problems (in order to detect relevant objects in the
scene). That means the model has to answer two questions: What is the
object? (classification problem) and where the object? (regression problem).

3.3.1 Combination of CNN and LSTM

Walch, F. et. al. [8] explain that the problem of feature detection described
in a previous section is that it can only succeed if enough correct matches
have been found. They came up with a regression based solution and pro-
jected a deep neural network consisting of Convolutional Neural Network
(CNN) and Long Short-Term Memory Network (LSTM) part. The net-
work’s goal is to learn a mapping from an image to a pose.

Convolutional Neural Network (CNN) is a deep neural network optimized for
image data. It consists of alternating convolution and pooling layers that ap-
ply convolution and pooling across the width and height of the image. This
repeating pattern helps to extract specific features such as edges, textures
or borders. CNN is widely used for image classification and object detection.
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Long Short-Term Memory Network (LSTM) is a type of Recurrent Neu-
ral Network (RNN) designed to accumulate or forget relevant contextual
information in its hidden state [8]. Instead of neurons, layer consists of
memory blocks with three types of gates: an input gate, an output gate and
a forget gate. LSTM is used here to reduce the number of features produced
by CNN and reveal correlation between them.

The first step introduced by Walch, F. et. al. [8] is to use a CNN for feature

Figure 1: The architecture of CNN+LSTM network by Walch, F. et. al. [8].

extraction. A drawback of deep learning is its need for large datasets, but
it can be solved by leveraging a pre-trained network as it was done in this
case using a classification network called GoogLeNet. Information of each
feature channel for one image acquired from GoogLeNet is gathered by an
average pooling layer. Then a fully connected (FC) layer follows to learn the
correlation among features. The output 2048 feature vector is treated as a
temporal sequence for LSTM network. In fact the whole vector is too long
for one LSTM, so it is reshaped to 32 x 64 matrix and four LSTMs are ap-
plied. The four outputs are concatenated and passed to the fully connected
pose prediction layers. In the result each pose P = [p, q] is represented by
its 3D camera position p ∈ R3 and a quaternion q ∈ R4 for its orientation.
The whole architecture is sketched in the Figure 1.

3.3.2 Indoor Localization using Image Fusion

Chelhwon, K. et. al. [3] introduce InFo system: Indoor Localization using
Image Fusion that is designed to accommodate for real-time changes in the
environment which are dynamic, unstructured and unpredictable in nature.
It fuses the real-time information captured by the surveillance system with
image captured by smart device to provide zone level localization.
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The system works with a smartphone camera held by user who wants to
locate himself and some static and dynamic cameras in the building of in-
terest. The image taken from user’s smartphone in given time called query
image is compared with the set of images from database using matching
algorithm. To each of these images a location where they were taken is
assigned. The location of the query image is stated as the location of the
database image most similar to it. To make this comparison quicker images
are encoded into compact visual feature space (later referred as embedded
space), in which the distances in chosen metrics correspond to visual sim-
ilarity of images. Naturally computing a metric as for example Euclidean
distance is much faster than comparing images.

In order to transform image to embedded space a loss function is used.

Figure 2: InFo system [3]. Overview of embedding learning with explicit
fusion method. The valid triplets are built by randomly sampling images
from both dynamic (left four columns) and static (right two columns) pools.

Loss function cuts of the distance between images taken from the same place
(they may differ in environment changes such as people, objects, lights or
angle of sight) and makes the distance of images taken from different places
even bigger to better distinguish various locations.

For feature extraction a deep neural network VGG-16 is used. Further-
more it is followed by pooling layers NetVLAD for aggregation of gained
localization descriptors into single vector. A training set consists of triplet
loss containing:

• xa, image in the zone a

• x+ = image in the same zone as xa

9



• x− = image in the different zone than xa

Triplets are randomly chosen from the set of images from static and dynamic
cameras and form an embedded space. A query image from the smartphone
camera is compared to a real-time image from static camera in the building.
The zone is estimated by voting scheme. Images from real-time camera im-
prove the accuracy of localization prediction especially when the changes of
environment occur, moreover the actual query image can be compared more
effectively with 6 images from real-time camera than with the whole image
dataset containing approximately 12 thousand images. Figure 2 summarizes
the architecture of InFo system.

4 Data Collection

Our algorithm for indoor localization is going to be applied for localization at
our university building, therefore database of images used in either computer
vision as well as machine learning approach should consist of images taken
there. Consequently we will augment the dataset or combine it with images
from other collections to enlarge it.

4.1 TUM-LSI Dataset

Although heretofore we were able to collect only a small set of images and
meanwhile experimented with the TU Munich Large-Scale Indoor (TUM-
LSI) dataset that the authors of [8] provided us as a response to our request
for access. This large indoor dataset (covering area of 5, 575m2) consists of
1,095 high-resolution images (4592 × 3448 pixels) with geo-referenced pose
information for each image. At each position in the building five images
where taken in five different horizontal directions (full 360◦) and one point-
ing up. The dataset is very challenging due to repeated structural elements
with nearly identical appearance and a general lack of well-textured regions.

The sample images at Figure 3 show that the TUM-LSI dataset is formed
by images taken by the camera with substantial fish eye effect. In our
case this is an unwanted pattern, because the application should work for
ordinary smartphone cameras that shoot without this effect. Also edges
that normally seem to be straight are curved on these images, therefore the
keypoint features may be matched incorrectly. Two possible solutions are
feasible, the first one is to remove fish eye effect (which we discuss in the
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Figure 3: Sample images from TUM-LSI dataset [8].

Results section) and the second is to find more suitable dataset (which is
the topic of the rest of the chapter).

4.2 COCO Dataset

Another promising set of images is called the Microsoft COCO (Common
Objects in Context) dataset [5]. It is not targeted on indoor environments,
however contains images taken indoors and is useful for variety of scene
understanding problems such as

• Detecting non-iconic views (or non-canonical perspectives of objects).

• Contextual reasoning between objects.

• Precise 2D localization of objects.

The purpose of this dataset necessitates natural images that contain multiple
objects. Since the detection of many objects such as sunglasses, cellphones
or chairs is highly dependent on contextual information, it is important
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Figure 4: Graphic distinction between (a) Iconic object images, (b) Iconic
scene imaged and (c) Non-iconic images. COCO dataset [5] consists mostly
of non-iconic images.

that detection datasets contain objects in their natural environments. Ac-
cordingly collectors focused on non-iconic images. It has been shown that
datasets containing more non-iconic images are better at generalizing. We
may roughly group images into three types:

a) Iconic-object images - Typical iconic-object images have a single large
object in a canonical perspective centered in the image, Figure 4(a).

b) Iconic-scene images - Iconic-scene images are shot from canonical view-
points and commonly lack people, Figure 4(b).

c) Non-iconic images – Images containing numerous categories, Figure
4(c). They can be found by searching for pairwise combinations of
object categories, such as “dog + car”.

The advantage of COCO dataset is that each object category involved has
a significant number of instances. In contrast to the popular ImageNet
dataset, it has fewer categories but more instances per category. This can
aid in learning detailed object models capable of precise 2D localization.
The dataset is also significantly larger in number of instances per category
than the PASCAL VOC and SUN datasets. Moreover MS COCO contains
considerably more object instances per image as compared to ImageNet and
PASCAL.

4.3 Another Datasets

Both mentioned datasets are promising, however need to either preprocess
or supplement with pose estimation. Hence we will probably take a look
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at a catalogue of datasets comprised by Zahangir, A. et. al. [10] includ-
ing MNIST, CIFAR 10/100, SVHN/ SVHN2, CalTech, STL-10, NORB,
SUN-dataset, ImageNet and many other datasets used in the field of image
processing and computer vision.

5 Results

So far we focused on our first objective which was to study recommended
and extended literature in order to gain prospect about the topic of indoor
localization and solutions based on camera images. Only then we can spec-
ify next steps and understand what time and effort it will require. As a
result we got familiar with various techniques and approaches for indoor
localization and similar tasks, some of them described above.

We also sought for set of images seasonable for both proposed solutions.
The application should work in the building of UPJS, though we were not
able to take pictures there heretofore. Meanwhile we have worked with a TU
Munich Large-Scale Indoor (TUM-LSI) dataset [8] of indoor high-resolution
wide-angle images taken in five different horizontal directions and one point-
ing up. The sample of images from this dataset (from all 1314 images) is
shown in the Figure 3.

5.1 Edge Detection

Before anything else images were rotated (because they were oriented to the
width). Afterwards Canny detector for edge detection was applied. The
algorithm decides whether a point belongs to an edge or not according to
two provided thresholds (the lower and the upper) and the following rules:

• If a pixel gradient is higher than the upper threshold, the pixel is
accepted as an edge.

• If a pixel gradient value is below the lower threshold, then it is rejected.

• If the pixel gradient is between the two thresholds, then it will be
accepted only if it is connected to a pixel that is above the upper
threshold.

Numerous threshold have been experimentally tried and the best result is
presented in the Figure 5. Edge detection can be followed by object detec-
tion, for example depicting doors, lights or windows.
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(a) Original image. (b) Canny edge detector applied.

Figure 5: Edge detection on sample image from TUM-LSI dataset [8] using
Canny edge detector.

5.2 Fish Eye Effect Removal

As it was already mentioned, the TUM-LSI dataset is a good large dataset
of images taken indoors, though present fish eye effect may cause inaccuracy.
Such a distortion can be eliminated using a photo of chessboard taken by
the same camera with the same settings as it had during taking the origi-
nal distorted images (presumption is that the lens distortion is the same in
every image). Jiang, K. [4] explains how the parameters intrinsic to camera
lens are computed and further used for camera calibration and distortion
removal.

Since we do not have a camera by which the images from TUM-LSI dataset
were taken, we manually reconstructed an image of a chessboard. We found
an image containing chessboard-like pattern and designed a chessboard with
exactly the same curvature as in original image. We also replaced the back-
ground for white area to make it easier for the algorithm to find the corners
of the chessboard and used bigger squares in chessboard as it was recom-
mended in [4]. Figure 6 shows the original image, constructed image with
a chessboard and the restored image. We can see that the result is quite
good.
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(a) Original image. (b) Chessboard image.

(c) Restored image.

Figure 6: Camera calibration for fish eye effect removal. The chessboard
image (b) was constructed in compliance with the original image (a) and
used to restore the image (c).
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